首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2546篇
  免费   94篇
  国内免费   13篇
化学   1656篇
晶体学   31篇
力学   46篇
数学   376篇
物理学   544篇
  2024年   5篇
  2023年   31篇
  2022年   65篇
  2021年   88篇
  2020年   57篇
  2019年   76篇
  2018年   63篇
  2017年   52篇
  2016年   126篇
  2015年   66篇
  2014年   115篇
  2013年   151篇
  2012年   191篇
  2011年   183篇
  2010年   114篇
  2009年   110篇
  2008年   147篇
  2007年   150篇
  2006年   123篇
  2005年   114篇
  2004年   91篇
  2003年   58篇
  2002年   64篇
  2001年   36篇
  2000年   41篇
  1999年   29篇
  1998年   21篇
  1997年   11篇
  1996年   27篇
  1995年   21篇
  1994年   28篇
  1993年   25篇
  1992年   26篇
  1991年   24篇
  1990年   21篇
  1989年   13篇
  1988年   12篇
  1987年   13篇
  1986年   8篇
  1985年   12篇
  1984年   10篇
  1983年   3篇
  1982年   15篇
  1981年   6篇
  1980年   3篇
  1979年   2篇
  1977年   4篇
  1975年   1篇
  1974年   1篇
排序方式: 共有2653条查询结果,搜索用时 0 毫秒
81.
Molecular beam scattering experiments and molecular dynamics simulations have been combined to develop an atomic-level understanding of energy transfer, accommodation, and reactions during collisions between gases and model organic surfaces. The work highlighted in this progress report has been motivated by the scientific importance of understanding fundamental interfacial chemical reactions and the relevance of reactions on organic surfaces to many areas of environmental chemistry. The experimental investigations have been accomplished by molecular beam scattering from ω-functionalized self-assembled monolayers (SAMs) on gold. Molecular beams provide a source of reactant molecules with precisely characterized collision energy and flux; SAMs afford control over the order, structure, and chemical nature of the surface. The details of molecular motion that affect energy exchange and scattering have been elucidated through classical-trajectory simulations of the experimental data using potential energy surfaces derived from ab initio calculations. Our investigations began by employing rare-gas scattering to explore how alkanethiol chain length and packing density, terminal group relative mass, orientation, and chemical functionality influence energy transfer and accommodation at organic surfaces. Subsequent studies of small molecule scattering dynamics provided insight into the influence of internal energy, molecular orientation, and gas–surface attractive forces in interfacial energy exchange. Building on the understanding of scattering dynamics in non-reactive systems, our work has recently explored the reaction probabilities and mechanisms for O3 and atomic fluorine in collisions with a variety of functionalized SAM surfaces. Together, this body of work has helped construct a more comprehensive understanding of reaction dynamics at organic surfaces.  相似文献   
82.
A series of mono- and bis-metallated [2]rotaxanes has been prepared using a CuAAC 'click' protocol that is compatible with metal-coordinated building blocks and ligands; the methodology provides a general means for appending a metal ion or complex to an organic scaffold via Cu(I)-catalysed 'click' chemistry, even when the molecule contains redox-active or kinetically labile metals or vacant ligand sites.  相似文献   
83.
We report the global minima structures of Li8Si8, Li10Si9, and Li12Si10 systems, in which silicon moieties maintain structural and chemical bonding characteristics similar to those of their building blocks: the aromatic clusters Td−Li4Si4 and C2v−Li6Si5. Electron counting rules, chemical bonding analysis, and magnetic response properties verify the silicon unit‘s aromaticity persistence. This study demonstrates the feasibility of assembling silicon-based nanostructures from aromatics clusters as building blocks.  相似文献   
84.
The preparation of nine novel 6H-2,7,7-trimethyl-4(o-,p-R-phenylamino)-7,8-dihydrofuro[3,2-c]-azepines with possible pharmacological activity is described. The structure of all products was corroborated by ir, 1H-nmr and ms.  相似文献   
85.
So far, several studies have focused on the synthesis of metallic nanoparticles making use of extracts from the fruit of the plants from the genus Capsicum. However, as the fruit is the edible, and highly commercial, part of the plant, in this work we focused on the leaves, a part of the plant that is considered agro-industrial waste. The biological synthesis of gold (AuNPs) and silver (AgNPs) nanoparticles using aqueous extracts of root, stem and leaf of Capsicum chinense was evaluated, obtaining the best results with the leaf extract. Gold and silver nanoparticles synthesized using leaf extract (AuNPs-leaf and AgNPs-leaf, respectively) were characterized by UV-visible spectrophotometry (UV-Vis), Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection (FTIR-ATR), X-ray Photoelectron Spectroscopy (XPS), Ultra Hight Resolution Scanning Electron Microscopy coupled to Energy-Dispersive X-ray spectroscopy (UHR-SEM-EDX) and Transmission Electron Microscopy (TEM), and tested for their antioxidant and antimicrobial activities. In addition, different metabolites involved in the synthesis of nanoparticles were analyzed. We found that by the use of extracts derived from the leaf, we could generate stable and easy to synthesize AuNPs and AgNPs. The AuNPs-leaf were synthesized using microwave radiation, while the AgNPs-leaf were synthesized using UV light radiation. The antioxidant activity of the extract, determined by ABTS, showed a decrease of 44.7% and 60.7% after the synthesis of the AuNPs-leaf and AgNPs-leaf, respectively. After the AgNPs-leaf synthesis, the concentration of polyphenols, reducing sugars and amino acids decreased by 15.4%, 38.7% and 46.8% in the leaf extract, respectively, while after the AuNPs-leaf synthesis only reducing sugars decreased by 67.7%. These results suggest that these groups of molecules are implicated in the reduction/stabilization of the nanoparticles. Although the contribution of these compounds in the synthesis of the AuNPs-leaf and the AgNPs-leaf was different. Finally, the AgNPs-leaf inhibited the growth of S. aureus, E. coli, S. marcescens and E. faecalis. All of them are bacterial strains of clinical importance due to their fast antibiotic resistance development.  相似文献   
86.
Caffeic acid (CA)-modified graphite electrodes [GE/poly(CA)] was applied to the co-detection of copper and lead in artisanal sugarcane spirit using square-wave anodic stripping voltammetry (SWASV). Electrochemical and morphological studies were performed, and a mechanism for polymerization was proposed. Electropolymerization, SWASV, and analysis conditions parameters were optimized. Interferents, repeatability, reproducibility, and addition and recovery tests were carried out. GE/poly(CA) shows a linear range from 15 to 705 μg/L with a limit of detection of 3.01 μg/L for Pb(II) and 4.50 μg/L for Cu(II). Real samples of artisanal sugarcane spirit were used, and the electrochemical results were compared with atomic absorption spectroscopy experiments.  相似文献   
87.
Various impregnated metallic salts on magnetite have been prepared, including cobalt, nickel, copper, ruthenium, and palladium salts, as well as a bimetallic palladium-copper derivative. Impregnated ruthenium catalyst is a versatile, inexpensive, and simple system for the selective N-monoalkylation of amino derivatives with poor nucleophilic character, such as aromatic and heteroaromatic amines, sulfonamides, sulfinamides, and nitroarenes, using in all cases alcohols as the initial source of the electrophile, through a hydrogen autotransfer process. In the case of sulfinamides, this is the first time that these amino compounds have been alkylated following this strategy, allowing the use of chiral sulfinamides and secondary alcohols to give the alkylated compound with a diastereomeric ratio of 92:8. In these cases, after alkylation, a simple acid deprotection gave the expected primary amines in good yields. The ruthenium catalyst is quite sensitive, and small modifications of the reaction medium can change the final product. The alkylation of amines using potassium hydroxide renders the N-monoalkylated amines, and the same protocol using sodium hydroxide yields the related imines. The catalyst can be easily removed by a simple magnet and can be reused up to ten times, showing the same activity.  相似文献   
88.
89.
The beryllocenes [Be(C(5)Me(4)H)(2)] (1), [Be(C(5)Me(5))(2)] (2), and [Be(C(5)Me(5))(C(5)Me(4)H)] (3) have been prepared from BeCl(2) and the appropriate KCp' reagent in toluene/diethyl ether solvent mixtures. The synthesis of 1 is facile (20 degrees C, overnight), but generation of decamethylberyllocene 2 demands high temperatures (ca. 115 degrees C) and extended reaction times (3-4 days). The mixed-ring beryllocene 3 is obtained when the known [(eta(5)-C(5)Me(5))BeCl] is allowed to react with K[C(5)Me(4)H], once more under somewhat forcing conditions (115 degrees C, 36 h). The structures of the three metallocenes have been determined by low-temperature X-ray studies. Both 1 and 3 present eta5/eta1 geometries of the slip-sandwich type, whereas 2 exhibits an almost regular, ferrocene-like, sandwich structure. In the mixed-ring compound 3, C(5)Me(5) is centrally bound to beryllium and the eta(1)-C(5)Me(4)H ring bonds to the metal through the unique CH carbon atom. This is also the binding mode of the eta(1)-ring of 1. To analyze the nature of the bonding in these molecules, theoretical calculations at different levels of theory have been performed on compounds 2 and 3, and a comparison with the bonding in [Be(C(5)H(5))(2)] has been made. As for the latter molecule, energy differences between the eta5/eta5 and the eta5/eta1 structures of 2 are very small, being of the order of a few kcal mol(-1). Constrained space orbital variations (CSOV) calculations show that the covalent character in the bonding is larger for [Be(C(5)Me(5))(2)] than for [Be(C(5)H(5))(2)] due to larger charge delocalization and to increased polarizability of the C(5)Me(5) fragment.  相似文献   
90.
In order to find new antimalarial drugs, an exploration about the chemical properties of the starting compounds 3‐amino‐6‐chloro‐4‐phenyl‐1H‐quinolin‐2‐one ( 1 ) and 3‐amino‐4‐methyl‐1H‐quinolin‐2‐one ( 2 ) was developed. Acylation with acyl chloride, sulfonyl chloride and acetic anhydride were carried out. Despite a previous report [2], when acetyl chloride or acetic anhydride were assayed on 1 , only the diacetyl derivative 7 was obtained. When this compound was heated at reflux temperature in a mixture of acetic acid and acetic anhydride, it was transformed in the oxazoloquinoline 8 . Further reactions of the acyl derivatives with diazomethane afforded 1‐methylated compounds. Compound 2 gave the imine 16 by condensation with 4‐nitrobenzaldehyde.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号