首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1541篇
  免费   57篇
  国内免费   9篇
化学   1032篇
晶体学   8篇
力学   35篇
数学   237篇
物理学   295篇
  2024年   3篇
  2023年   25篇
  2022年   52篇
  2021年   67篇
  2020年   45篇
  2019年   57篇
  2018年   48篇
  2017年   38篇
  2016年   91篇
  2015年   43篇
  2014年   82篇
  2013年   102篇
  2012年   133篇
  2011年   125篇
  2010年   70篇
  2009年   62篇
  2008年   80篇
  2007年   95篇
  2006年   79篇
  2005年   70篇
  2004年   57篇
  2003年   30篇
  2002年   25篇
  2001年   16篇
  2000年   14篇
  1999年   10篇
  1998年   9篇
  1997年   7篇
  1996年   8篇
  1995年   5篇
  1994年   9篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1982年   6篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1977年   4篇
  1974年   1篇
排序方式: 共有1607条查询结果,搜索用时 0 毫秒
71.
Not so elusive : [FeII(CN)5(HNO)]3? has been characterized spectroscopically after the two‐electron reduction of nitroprusside (see scheme). The complex is stable at pH 6, slowly decomposing to [Fe(CN)6]4? and N2O. It is deprotonated at increasing pH value with oxidation of bound NO? to [FeII(CN)5(NO)]3?. [FeII(CN)5(HNO)]3? is the first non‐heme iron–nitroxyl complex prepared in aqueous solution that is reversibly redox‐active under biologically relevant conditions.

  相似文献   

72.
We designed, synthesized, and characterized a new Zr‐based metal–organic framework material, NU‐1100 , with a pore volume of 1.53 ccg?1 and Brunauer–Emmett–Teller (BET) surface area of 4020 m2g?1; to our knowledge, currently the highest published for Zr‐based MOFs. CH4/CO2/H2 adsorption isotherms were obtained over a broad range of pressures and temperatures and are in excellent agreement with the computational predictions. The total hydrogen adsorption at 65 bar and 77 K is 0.092 g g?1, which corresponds to 43 g L?1. The volumetric and gravimetric methane‐storage capacities at 65 bar and 298 K are approximately 180 vSTP/v and 0.27 g g?1, respectively.  相似文献   
73.
74.
The power conversion efficiency (PCE) of NiO based perovskite solar cells has recently hit a record 22.1% with a hybrid organic–inorganic perovskite composition and a PCE above 15% in a fully inorganic configuration was achieved. Moreover, NiO processing is a mature technology, with different industrially attractive processes demonstrated in the last few years. These considerations, along with the excellent stabilities reported, clearly point towards NiO as the most efficient inorganic hole selective layer for lead halide perovskite photovoltaics, which is the topic of this review. NiO optoelectronics is discussed by analysing the different doping mechanisms, with a focus on the case of alkaline and transition metal cation dopants. Doping allows tuning the conductivity and the energy levels of NiO, improving the overall performance and adapting the material to a variety of perovskite compositions. Furthermore, we summarise the main investigations on the NiO/perovskite interface stability. In fact, the surface of NiO is commonly oxidised and reactive with perovskite, also under the effect of light, thermal and electrical stress. Interface engineering strategies should be considered aiming at long term stability and the highest efficiency. Finally, we present the main achievements in flexible, fully printed and lead-free perovskite photovoltaics which employ NiO as a layer and provide our perspective to accelerate the improvement of these technologies. Overall, we show that adequately doped and passivated NiO might be an ideal hole selective layer in every possible application of perovskite solar cells.

The power conversion efficiency of NiO based perovskite solar cells has recently hit a record 22.1%. Here, the main advances are reviewed and the role of NiO in the next breakthroughs is discussed.  相似文献   
75.
Various impregnated metallic salts on magnetite have been prepared, including cobalt, nickel, copper, ruthenium, and palladium salts, as well as a bimetallic palladium-copper derivative. Impregnated ruthenium catalyst is a versatile, inexpensive, and simple system for the selective N-monoalkylation of amino derivatives with poor nucleophilic character, such as aromatic and heteroaromatic amines, sulfonamides, sulfinamides, and nitroarenes, using in all cases alcohols as the initial source of the electrophile, through a hydrogen autotransfer process. In the case of sulfinamides, this is the first time that these amino compounds have been alkylated following this strategy, allowing the use of chiral sulfinamides and secondary alcohols to give the alkylated compound with a diastereomeric ratio of 92:8. In these cases, after alkylation, a simple acid deprotection gave the expected primary amines in good yields. The ruthenium catalyst is quite sensitive, and small modifications of the reaction medium can change the final product. The alkylation of amines using potassium hydroxide renders the N-monoalkylated amines, and the same protocol using sodium hydroxide yields the related imines. The catalyst can be easily removed by a simple magnet and can be reused up to ten times, showing the same activity.  相似文献   
76.
We report the global minima structures of Li8Si8, Li10Si9, and Li12Si10 systems, in which silicon moieties maintain structural and chemical bonding characteristics similar to those of their building blocks: the aromatic clusters Td−Li4Si4 and C2v−Li6Si5. Electron counting rules, chemical bonding analysis, and magnetic response properties verify the silicon unit‘s aromaticity persistence. This study demonstrates the feasibility of assembling silicon-based nanostructures from aromatics clusters as building blocks.  相似文献   
77.
In order to find new antimalarial drugs, an exploration about the chemical properties of the starting compounds 3‐amino‐6‐chloro‐4‐phenyl‐1H‐quinolin‐2‐one ( 1 ) and 3‐amino‐4‐methyl‐1H‐quinolin‐2‐one ( 2 ) was developed. Acylation with acyl chloride, sulfonyl chloride and acetic anhydride were carried out. Despite a previous report [2], when acetyl chloride or acetic anhydride were assayed on 1 , only the diacetyl derivative 7 was obtained. When this compound was heated at reflux temperature in a mixture of acetic acid and acetic anhydride, it was transformed in the oxazoloquinoline 8 . Further reactions of the acyl derivatives with diazomethane afforded 1‐methylated compounds. Compound 2 gave the imine 16 by condensation with 4‐nitrobenzaldehyde.  相似文献   
78.
The beryllocenes [Be(C(5)Me(4)H)(2)] (1), [Be(C(5)Me(5))(2)] (2), and [Be(C(5)Me(5))(C(5)Me(4)H)] (3) have been prepared from BeCl(2) and the appropriate KCp' reagent in toluene/diethyl ether solvent mixtures. The synthesis of 1 is facile (20 degrees C, overnight), but generation of decamethylberyllocene 2 demands high temperatures (ca. 115 degrees C) and extended reaction times (3-4 days). The mixed-ring beryllocene 3 is obtained when the known [(eta(5)-C(5)Me(5))BeCl] is allowed to react with K[C(5)Me(4)H], once more under somewhat forcing conditions (115 degrees C, 36 h). The structures of the three metallocenes have been determined by low-temperature X-ray studies. Both 1 and 3 present eta5/eta1 geometries of the slip-sandwich type, whereas 2 exhibits an almost regular, ferrocene-like, sandwich structure. In the mixed-ring compound 3, C(5)Me(5) is centrally bound to beryllium and the eta(1)-C(5)Me(4)H ring bonds to the metal through the unique CH carbon atom. This is also the binding mode of the eta(1)-ring of 1. To analyze the nature of the bonding in these molecules, theoretical calculations at different levels of theory have been performed on compounds 2 and 3, and a comparison with the bonding in [Be(C(5)H(5))(2)] has been made. As for the latter molecule, energy differences between the eta5/eta5 and the eta5/eta1 structures of 2 are very small, being of the order of a few kcal mol(-1). Constrained space orbital variations (CSOV) calculations show that the covalent character in the bonding is larger for [Be(C(5)Me(5))(2)] than for [Be(C(5)H(5))(2)] due to larger charge delocalization and to increased polarizability of the C(5)Me(5) fragment.  相似文献   
79.
A series of mono- and bis-metallated [2]rotaxanes has been prepared using a CuAAC 'click' protocol that is compatible with metal-coordinated building blocks and ligands; the methodology provides a general means for appending a metal ion or complex to an organic scaffold via Cu(I)-catalysed 'click' chemistry, even when the molecule contains redox-active or kinetically labile metals or vacant ligand sites.  相似文献   
80.
Molecular beam scattering experiments and molecular dynamics simulations have been combined to develop an atomic-level understanding of energy transfer, accommodation, and reactions during collisions between gases and model organic surfaces. The work highlighted in this progress report has been motivated by the scientific importance of understanding fundamental interfacial chemical reactions and the relevance of reactions on organic surfaces to many areas of environmental chemistry. The experimental investigations have been accomplished by molecular beam scattering from ω-functionalized self-assembled monolayers (SAMs) on gold. Molecular beams provide a source of reactant molecules with precisely characterized collision energy and flux; SAMs afford control over the order, structure, and chemical nature of the surface. The details of molecular motion that affect energy exchange and scattering have been elucidated through classical-trajectory simulations of the experimental data using potential energy surfaces derived from ab initio calculations. Our investigations began by employing rare-gas scattering to explore how alkanethiol chain length and packing density, terminal group relative mass, orientation, and chemical functionality influence energy transfer and accommodation at organic surfaces. Subsequent studies of small molecule scattering dynamics provided insight into the influence of internal energy, molecular orientation, and gas–surface attractive forces in interfacial energy exchange. Building on the understanding of scattering dynamics in non-reactive systems, our work has recently explored the reaction probabilities and mechanisms for O3 and atomic fluorine in collisions with a variety of functionalized SAM surfaces. Together, this body of work has helped construct a more comprehensive understanding of reaction dynamics at organic surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号