首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1192篇
  免费   43篇
化学   925篇
晶体学   5篇
力学   22篇
数学   135篇
物理学   148篇
  2024年   3篇
  2023年   18篇
  2022年   60篇
  2021年   57篇
  2020年   39篇
  2019年   42篇
  2018年   20篇
  2017年   33篇
  2016年   57篇
  2015年   45篇
  2014年   43篇
  2013年   91篇
  2012年   101篇
  2011年   100篇
  2010年   45篇
  2009年   42篇
  2008年   62篇
  2007年   63篇
  2006年   42篇
  2005年   43篇
  2004年   32篇
  2003年   29篇
  2002年   27篇
  2001年   11篇
  2000年   9篇
  1999年   4篇
  1998年   9篇
  1997年   3篇
  1996年   17篇
  1995年   7篇
  1994年   6篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   7篇
  1988年   6篇
  1987年   2篇
  1986年   2篇
  1984年   2篇
  1983年   4篇
  1982年   5篇
  1981年   2篇
  1978年   4篇
  1977年   4篇
  1976年   7篇
  1975年   2篇
  1972年   3篇
  1971年   2篇
  1967年   2篇
  1937年   1篇
排序方式: 共有1235条查询结果,搜索用时 0 毫秒
41.
Convenience food products tend to alter their quality and texture while stored. Texture-giving food components are often starch-rich ingredients, such as pasta or rice. Starch transforms depending on time, temperature and water content, which alters the properties of products. Monitoring these transformations, which are associated with a change in mobility of the starch chain segments, could optimize the quality of food products containing multiple ingredients. In order to do so, we applied a simple and efficient in situ 13C solid-state magic angle spinning (MAS) NMR approach, based on two different polarization transfer schemes, cross polarization (CP) and insensitive nuclei enhanced by polarization transfer (INEPT). The efficiency of the CP and INEPT transfer depends strongly on the mobility of chain segments—the time scale of reorientation of the CH-bond and the order parameter. Rigid crystalline or amorphous starch chains give rise to CP peaks, whereas mobile gelatinized starch chains appear as INEPT peaks. Comparing 13C solid-state MAS NMR experiments based on CP and INEPT allows insight into the progress of gelatinization, and other starch transformations, by reporting on both rigid and mobile starch chains simultaneously with atomic resolution by the 13C chemical shift. In conjunction with 1H solid-state MAS NMR, complementary information about other food components present at low concentration, such as lipids and protein, can be obtained. We demonstrate our approach on starch-based products and commercial pasta as a function of temperature and storage.  相似文献   
42.
The first immobilization of a pyrene-tagged chromium salen complex through π-π noncovalent interactions on reduced graphene oxide (rGO) is described. A very robust supported catalytic system is obtained to promote asymmetric catalysis in repeated cycles, without loss of activity or enantioselectivity. This specific behavior was demonstrated in two different catalytic reactions (up to ten reuses) promoted by chromium salen complexes, the cyclohexene oxide ring-opening reaction and the hetero-Diels-Alder cycloaddition between various aldehydes and Danishefsky's diene. Furthermore, the chiral chromium salen@rGO has been found to be compatible with a multi-substrate type use, in which the structure of the substrate involved is modified each time the catalyst is reused.  相似文献   
43.
Aggregation-induced emission (AIE) compounds display a photophysical phenomenon in which the aggregate state exhibits stronger emission than the isolated units. The common term of “AIEgens” was coined to describe compounds undergoing the AIE effect. Due to the recent interest in AIEgens, the search for novel hybrid organic–inorganic compounds with unique luminescence properties in the aggregate phase is a relevant goal. In this perspective, the abundant, inexpensive, and nontoxic d10 zinc cation offers unique opportunities for building AIE active fluorophores, sensing probes, and bioimaging tools. Considering the novelty of the topic, relevant examples collected in the last 5 years (2016–2021) through scientific production can be considered fully representative of the state-of-the-art. Starting from the simple phenomenological approach and considering different typological and chemical units and structures, we focused on zinc-based AIEgens offering synthetic novelty, research completeness, and relevant applications. A special section was devoted to Zn(II)-based AIEgens for living cell imaging as the novel technological frontier in biology and medicine.  相似文献   
44.
During kiwiberry production, different by-products are generated, including leaves that are removed to increase the fruit’s solar exposure. The aim of this work was to extract bioactive compounds from kiwiberry leaf by employing microwave-assisted extraction (MAE). Compatible food solvents (water and ethanol) were employed. The alcoholic extract contained the highest phenolic and flavonoid contents (629.48 mg of gallic acid equivalents (GAE) per gram of plant material on dry weight (dw) (GAE/g dw) and 136.81 mg of catechin equivalents per gram of plant material on dw (CAE/g dw), respectively). Oppositely, the hydroalcoholic extract achieved the highest antioxidant activity and scavenging activity against reactive oxygen and nitrogen species (IC50 = 29.10 μg/mL for O2•−, IC50 = 1.87 μg/mL for HOCl and IC50 = 1.18 μg/mL for NO). The phenolic profile showed the presence of caffeoylquinic acids, proanthocyanidin, and quercetin in all samples. However, caffeoylquinic acids and quercetin were detected in higher amounts in the alcoholic extract, while proanthocyanidins were prevalent in the hydroalcoholic extract. No adverse effects were observed on Caco-2 viability, while the highest concentration (1000 µg/mL) of hydroalcoholic and alcoholic extracts conducted to a decrease of HT29-MTX viability. These results highlight the MAE potentialities to extract bioactive compounds from kiwiberry leaf.  相似文献   
45.
The possibility of using silver nanoparticles (AgNPs) to enhance the plants growth, crop production, and control of plant diseases is currently being researched. One of the most effective approaches for the production of AgNPs is green synthesis. Herein, we report a green and phytogenic synthesis of AgNPs by using aqueous extract of strawberry waste (solid waste after fruit juice extraction) as a novel bioresource, which is a non-hazardous and inexpensive that can act as a reducing, capping, and stabilizing agent. Successful biosynthesis of AgNPs was monitored by UV-visible spectroscopy showing a surface plasmon resonance (SPR) peak at ~415 nm. The X-ray diffraction studies confirm the face-centered cubic crystalline AgNPs. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques confirm the rectangular shape with an average size of ~55 nm. The antibacterial and antifungal efficacy and inhibitory impact of the biosynthesized AgNPs were tested against nematode, Meloidogyne incognita, plant pathogenic bacterium, Ralstonia solanacearum and fungus, Fusarium oxysporum. These results confirm that biosynthesized AgNPs can significantly control these plant pathogens.  相似文献   
46.
A study of the effects of single and combined protease hydrolysis on myofibrillar versus collagenous proteins of poultry by-products has been conducted. The aim was to contribute with knowledge for increased value creation of all constituents of these complex by-products. A rational approach was implemented for selecting proteases exhibiting the most different activity towards the major protein-rich constituents of mechanically deboned chicken residue (MDCR). An initial activity screening of 18 proteases on chicken meat, turkey tendons and MDCR was conducted. Based on weight yield, size exclusion chromatography (SEC) and SDS-PAGE, stem Bromelain and Endocut-02 were selected. Studies on hydrolysis of four different poultry by-products at 40 °C, evaluated by protein yield, SEC, and SDS-PAGE, indicate that the proteases’ selectivity difference can be utilized in tailor-making hydrolysates, enriched in either meat- and collagen-derived peptides or gelatin. Three modes of stem Bromelain and Endocut-02 combinations during hydrolysis of MDCR were performed and compared with single protease hydrolysis. All modes of the protease combinations resulted in a similar approximately 15% increase in product yield, with products exhibiting similar SEC and SDS-PAGE profiles. This shows that irrespective of the modes of combination, the use of more than one enzyme in hydrolysis of collagen-rich material can provide means to increase the total protein yield and ultimately contribute to increased value creation of poultry by-products.  相似文献   
47.
Human glutathione (GSH) transferase (hGSTP1-1) processes with similar kinetic efficiencies the antitumor agents 2-crotonyloxymethyl-2-cyclohexenone (COMC-6), 2-crotonyloxymethyl-2-cycloheptenone (COMC-7), and 2-crotonyloxymethyl-2-cyclopentenone (COMC-5) to 2-glutathionylmethyl-2-cyclohexenone, 2-glutathionylmethyl-3-glutathionyl-2-cycloheptenone, and 2-glutathionylmethyl-2-cyclopentenone, respectively. This process likely involves initial enzyme-catalyzed Michael addition of GSH to the COMC derivative to give a glutathionylated enol(ate), which undergoes nonstereospecific ketonization, either while bound to the active site or free in solution, to a glutathionylated exocyclic enone. Free in solution, GSH reacts at the exomethylene carbon of the exocyclic enone, displacing the first GSH to give the final product. This mechanism is supported by the observation of multiphasic kinetics in the presence of high concentrations of hGSTP1-1 and the ability to trap kinetically competent exocyclic enones in aqueous acid using COMC-6 and COMC-7 as substrates. That the exocyclic enone is formed by nonstereospecific ketonization of an enol(ate) species is indicated by the observation that COMC-6 (chirally labeled with deuterium at the exomethylene carbon) gives stereorandomly labeled exocyclic enone. The isozymes hGSTP1-1, hGSTA1-1, hGSTA4-4, and hGSTM2-2 catalyze the conversion of COMC-6 to final product with similar efficiencies (K(m) = 0.08-0.34 mM, k(cat) = 1.5-6.1 s(-)(1)); no activity was detected with the rat rGSTT2-2 isozyme. Molecular docking studies indicate that in hGSTP1-1, the hydroxyl group of Tyr108 might serve as a general acid catalyst during substrate turnover. The possible significance of these observations with respect to the metabolism of COMC derivatives in multidrug resistant tumors is discussed.  相似文献   
48.
Padwa A  Danca MD 《Organic letters》2002,4(5):715-717
[reaction: see text] The first total synthesis of (+/-)-jamtine (4), a tetrahydroisoquinoline alkaloid reputed for its therapeutic properties, is described. The key step involves a tandem thionium/N-acyliminium ion cyclization from enamido sulfoxide 13. The cascade process takes place with high diastereoselectivity and in excellent yield.  相似文献   
49.
The first total synthesis of (±)-floribundane B is reported. Johnson-Claisen rearrangement of a Morita-Baylis-Hillman adduct assembled all of the stereochemical features of this secoiridoid. The formal synthesis of (±)-oleocanthal and the synthesis of a chemical constituent of olive press juice is also reported.  相似文献   
50.
Microglia, the brain‐resident macrophage, are involved in brain development and contribute to the progression of neural disorders. Despite the importance of microglia, imaging of live microglia at a cellular resolution has been limited to transgenic mice. Efforts have therefore been dedicated to developing new methods for microglia detection and imaging. Using a thorough structure–activity relationships study, we developed CDr20, a high‐performance fluorogenic chemical probe that enables the visualization of microglia both in vitro and in vivo. Using a genome‐scale CRISPR‐Cas9 knockout screen, the UDP‐glucuronosyltransferase Ugt1a7c was identified as the target of CDr20. The glucuronidation of CDr20 by Ugt1a7c in microglia produces fluorescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号