首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1186篇
  免费   53篇
化学   903篇
晶体学   5篇
力学   24篇
数学   135篇
物理学   172篇
  2023年   15篇
  2022年   42篇
  2021年   57篇
  2020年   39篇
  2019年   42篇
  2018年   20篇
  2017年   33篇
  2016年   57篇
  2015年   45篇
  2014年   43篇
  2013年   92篇
  2012年   101篇
  2011年   102篇
  2010年   46篇
  2009年   43篇
  2008年   65篇
  2007年   64篇
  2006年   43篇
  2005年   44篇
  2004年   32篇
  2003年   30篇
  2002年   28篇
  2001年   11篇
  2000年   9篇
  1999年   4篇
  1998年   9篇
  1997年   3篇
  1996年   17篇
  1995年   7篇
  1994年   6篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   7篇
  1988年   6篇
  1986年   3篇
  1983年   5篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1976年   7篇
  1975年   2篇
  1974年   2篇
  1972年   5篇
  1971年   3篇
  1968年   2篇
  1967年   2篇
排序方式: 共有1239条查询结果,搜索用时 15 毫秒
991.
Microalgae are complex photosynthetic organisms found in marine and freshwater environments that produce valuable metabolites. Microalgae-derived metabolites have gained remarkable attention in different industrial biotechnological processes and pharmaceutical and cosmetic industries due to their multiple properties, including antioxidant, anti-aging, anti-cancer, phycoimmunomodulatory, anti-inflammatory, and antimicrobial activities. These properties are recognized as promising components for state-of-the-art cosmetics and cosmeceutical formulations. Efforts are being made to develop natural, non-toxic, and environmentally friendly products that replace synthetic products. This review summarizes some potential cosmeceutical applications of microalgae-derived biomolecules, their mechanisms of action, and extraction methods.  相似文献   
992.
The growing demand of responsive tools for biological and biomedical applications pushes towards new low-cost probes easy to synthesize and versatile. Current optical probes are theranostic tools simultaneously responsive to biological parameters/analyte and therapeutically operating. Among the optical methods for pH monitoring, simple small organic molecules including multifunctional probes for simultaneous biological activity being highly desired by scientists and technicians. Here, we present a novel pH-responsive probe with a three-ring heteroaromatic pattern and a flexible cationic chain. The novel molecule shows real-time naked-eye colorimetric and fluorescence response in the slightly acidic pH range besides its excellent solubility both in the organic phase and in water. In addition, the small probe shows significant antibacterial activity, particularly against Escherichia coli. Single-crystal X-ray study and density functional theory (DFT) calculations rationalize the molecule spectroscopic response. Finally, molecular dynamics (MD) elucidate the interactions between the probe and a model cell membrane.  相似文献   
993.
The analysis of the ratios of entropy and enthalpy characteristics and their contributions to the change in the Gibbs energy of intermolecular interactions of crown ethers and cyclodextrins with amino acids is carried out. Two different types of macrocycles were chosen for examination: crown ethers with a hydrophilic interior and cyclodextrins with a hydrophobic inner cavity and a hydrophilic exterior. The thermodynamics of complex formation of crown ethers and cyclodextrins with amino acids in water and aqueous-organic solvents of variable composition was examined. The contributions of the entropy solvation of complexes of 18-crown-6 with glycine, alanine, phenylalanine to the change in the entropy of complexation in water-ethanol and water-dimethyl sulfoxide solvents was calculated and analyzed. It was found that the ratios of the entropy and enthalpy solvation of the reagents for these systems have similar trends when moving from water to aqueous-organic mixtures. The relationship between the thermodynamic characteristics and structural features of the complexation processes between cyclodextrins and amino acids has been established. The thermodynamic enthalpy–entropy compensation effect was revealed, and its features for complexation of cyclodextrins and 18-crown-6 were considered. It was concluded that, based on the thermodynamic parameters of molecular complexation, one could judge the mode of the formation of complexes, the main driving forces of the interactions, and the degree of desolvation.  相似文献   
994.
The affinity of the polyether ionophore salinomycin to bind IA/IB metal ions was accessed using the Gibbs free energy of the competition reaction between SalNa (taken as a reference) and its rival ions: [M+-solution] + [SalNa] → [SalM] + [Na+-solution] (M = Li, K, Rb, Cs, Cu, Ag, Au). The DFT/PCM computations revealed that the ionic radius, charge density and accepting ability of the competing metal cations, as well as the dielectric properties of the solvent, have an influence upon the selectivity of salinomycin. The optimized structures of the monovalent metal complexes demonstrate the flexibility of the ionophore, allowing the coordination of one or two water ligands in SalM-W1 and SalM-W2, respectively. The metal cations are responsible for the inner coordination sphere geometry, with coordination numbers spread between 2 (Au+), 4 (Li+ and Cu+), 5/6 (Na+, K+, Ag+), 6/7 (Rb+) and 7/8 (Cs+). The metals’ affinity to salinomycin in low-polarity media follows the order of Li+ > Cu+ > Na+ > K+ > Au+ > Ag+ > Rb+ > Cs+, whereas some derangement takes place in high-dielectric environment: Li+ ≥ Na+ > K+ > Cu+ > Au+ > Ag+ > Rb+ > Cs+.  相似文献   
995.
Targeting cells specifically based on receptor expression levels remains an area of active research to date. Selective binding of receptors cannot be achieved by increasing the individual binding strength, as this does not account for differing distributions of receptor density across healthy and diseased cells. Engaging receptors above a threshold concentration would be desirable in devising selective diagnostics. Integrins are prime target candidates as they are readily available on the cell surface and have been reported to be overexpressed in diseases. Insights into their spatial organization would therefore be advantageous to design selective targeting agents. Here, we investigated the effect of activation method on integrin α5β1 clustering by immunofluorescence and modeled the global neighbor distances with input from an immuno-staining assay and image processing of microscopy images. This data was used to engineer spatially-controlled DNA-scaffolded bivalent ligands, which we used to compare trends in spatial-selective binding observed across HUVEC, CHO and HeLa in resting versus activated conditions in confocal microscopy images. For HUVEC and CHO, the data demonstrated an improved selectivity and localisation of binding for smaller spacings ~7 nm and ~24 nm, in good agreement with the model. A deviation from the mode predictions for HeLa was observed, indicative of a clustered, instead of homogeneous, integrin organization. Our findings demonstrate how low-technology imaging methods can guide the design of spatially controlled ligands to selectively differentiate between cell type and integrin activation state.  相似文献   
996.
The branching of ionic liquid cation sidechains utilizing silicon as the backbone was explored and it was found that this structural feature leads to fluids with remarkably low density and viscosity. The relatively low liquid densities suggest a large free volume in these liquids. Argon solubility was measured using a precise saturation method to probe the relative free volumes. Argon molar solubilities were slightly higher in ionic liquids with alkylsilane and siloxane groups within the cation, compared to carbon-based branched groups. The anion size, however, showed by far the dominant effect on argon solubility. Thermodynamic solvation parameters were derived from the solubility data and the argon solvation environment was modelled utilizing the polarizable CL&Pol force field. Semiquantitative analysis was in agreement with trends established from the experimental data. The results of this investigation demonstrate design principles for targeted ionic liquids when optimisation for the free volume is required, and demonstrate the utility of argon as a simple, noninteracting probe. As more ionic liquids find their way into industrial processes of scale, these findings are important for their utilisation in the capture of any gaseous solute, gas separation, or in processes involving the transformation of gases or small molecules.

The branching of ionic liquid cation sidechains utilizing silicon as the backbone was explored and it was found that this structural feature leads to fluids with remarkably low density and viscosity.  相似文献   
997.
Journal of Thermal Analysis and Calorimetry - The thermal behavior of co-oligomers of ε-caprolactone (ECL) with gluconolactone, compared to the ε-caprolactone oligomer, has been assessed...  相似文献   
998.
Structural Chemistry - The contents of issues 3 and 4 of Structural Chemistry from the calendar year 2017 are summarized in the present review. A brief thermochemical commentary and recommendations...  相似文献   
999.

The contents of issues 5 and 6 of Structural Chemistry from the calendar year 2018 are summarized in the present review. A brief thermochemical commentary and recommendations for future research have been added to the summary of each paper.

  相似文献   
1000.
Quetiapine fumarate (QUE) is an antipsychotic agent with a chemical structure that is susceptible to degradation; therefore, it is important to study its stability using appropriate analytical tools. Knowledge of the stability profile of a drug is important because chemical degradation of its active component often results in a loss of potency, affecting its efficacy and safety. This current work reports degradation studies of QUE as drug substance, under different stress conditions such as oxidation, hydrolysis, heat, humidity and photolysis, by a stability‐indicating LC method. The chemical stability was evaluated using a simple HPLC/diode array detection method, with a core‐shell C18 column under isocratic conditions, which allows the separation of all primary degradation products (DPs) in a short run time. QUE was mainly degraded under oxidative and hydrolytic conditions, with the formation of three and two DPs, respectively, which were identified by electrospray ionization–tandem mass spectrometry. The method was properly validated in terms of linearity, accuracy, precision, selectivity, robustness and quantitation limit. Commercial tablets containing 25 mg of QUE were quantified, with results obtained within the United States Pharmacopeia limits. The proposed method is suitable to assess the stability and perform routine analysis of QUE in pharmaceutical samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号