首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24242篇
  免费   597篇
  国内免费   150篇
化学   14831篇
晶体学   180篇
力学   758篇
综合类   1篇
数学   3609篇
物理学   5610篇
  2023年   140篇
  2022年   215篇
  2021年   302篇
  2020年   359篇
  2019年   353篇
  2018年   268篇
  2017年   246篇
  2016年   566篇
  2015年   487篇
  2014年   557篇
  2013年   1109篇
  2012年   1142篇
  2011年   1342篇
  2010年   833篇
  2009年   739篇
  2008年   1157篇
  2007年   1251篇
  2006年   1125篇
  2005年   1181篇
  2004年   962篇
  2003年   763篇
  2002年   720篇
  2001年   560篇
  2000年   511篇
  1999年   311篇
  1998年   288篇
  1997年   292篇
  1996年   352篇
  1995年   312篇
  1994年   291篇
  1993年   344篇
  1992年   312篇
  1991年   292篇
  1990年   242篇
  1989年   237篇
  1988年   248篇
  1987年   237篇
  1986年   205篇
  1985年   288篇
  1984年   283篇
  1983年   214篇
  1982年   231篇
  1981年   221篇
  1980年   217篇
  1979年   210篇
  1978年   219篇
  1977年   159篇
  1976年   172篇
  1975年   148篇
  1974年   172篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Thermodynamic data are often used to calibrate or test amomic-level (AL) force fields for molecular dynamics (MD) simulations. In contrast, the majority of coarse-grained (CG) force fields do not rely extensively on thermodynamic quantities. Recently, a CG force field for lipids, hydrocarbons, ions, and water, in which approximately four non-hydrogen atoms are mapped onto one interaction site, has been proposed and applied to study various aspects of lipid systems. To date, no extensive investigation of its capability to describe salvation thermodynamics has been undertaken. In the present study, a detailed picture of vaporization, solvation, and phase-partitioning thermodynamics for liquid hydrocarbons and water was obtained at CG and AL resolutions, in order to compare the two types or models and evaluate their ability to describe thermodynamic properties in the temperature range between 263 and 343 K. Both CG and AL models capture the experimental dependence of the thermodynamic properties on the temperature, albeit a systematically weaker dependence is found for the CG model. Moreover, deviations are found for solvation thermodynamics and for the corresponding enthalpy-entropy compensation for the CG model. Particularly water/oil repulsion seems to be overestimated. However, the results suggest that the thermodynamic properties considered should be reproducible by a CG model provided it is reparametrized on the basis of these liquid-phase properties.  相似文献   
952.
953.
Mammalian cells cultured on 2D surfaces in microfluidic channels are increasingly used in drug development and biological research applications. These systems would have more biological or clinical relevance if the cells exhibit 3D phenotypes similar to the cells in vivo. We have developed a microfluidic channel based system that allows cells to be perfusion-cultured in 3D by supporting them with adequate 3D cell-cell and cell-matrix interactions. The maximal cell-cell interaction was achieved by perfusion-seeding cells through an array of micropillars; and 3D cell-matrix interactions were achieved by a polyelectrolyte complex coacervation process to form a thin layer of matrix conforming to the 3D cell shapes. Carcinoma cell lines (HepG2, MCF7), primary differentiated (hepatocytes) and primary progenitor cells (bone marrow mesenchymal stem cells) were perfusion-cultured for 72 hours to 1 week in the microfluidic channel, which preserved their 3D cyto-architecture and cell-specific functions or differentiation competence. This transparent 3D microfluidic channel-based cell culture system also allows direct optical monitoring of cellular events for a wide range of applications.  相似文献   
954.
The eco-friendly synthesis, spectroscopic (IR, MS, 1H and 13C NMR) study and biological (cytostatic, antiviral) activity of sodium and potassium benzeneazophosphonate complexes, obtained by reaction in the solid state under microwave irradiation of the alkali salts of ethyl [α-(4-benzeneazoanilino)-N-benzyl]phosphonic acid and [α-(4-benzeneazoanilino)-N-4-methoxybenzyl]phosphonic acid with crown ethers containing 18-membered (dibenzo-18-crown-6 and bis(4′-di-tert-butylbenzo)-18-crown-6), 24-membered (dibenzo-24-crown-8) and 30-membered (dibenzo-30-crown-10) macrocyclic rings, have been described. The simple work-up solvent free reaction is an efficient green procedure for the formation of mononuclear crown ether complexes in which the sodium/potassium ion is bound to oxygen atoms of the macrocycle and the phosphonic acid oxygen. The free crown ethers, alkali benzeneazophosphonate salts and their complexes were evaluated for their cytostatic activity in vitro against murine leukemia L1210, murine mammary carcinoma FM3A and human T-lymphocyte CEM and MT-4 cell lines, as well as for their antiviral activity against a wide variety of DNA and RNA viruses. The investigated compounds showed no specific antiviral activity, whereas all the free crown ethers and their complexes demonstrated cytostatic activity, which was especially pronounced in the case of bis(4′-di-tert-butylbenzo)-18-crown-6 and its complexes.  相似文献   
955.
Although membrane-bound dehydrogenases isolated from Gluconobacter sp. (mainly PQQ-dependent alcohol and fructose dehydrogenase) have been used for preparing diverse forms of bioelectronic interfaces for almost 2 decades, it is not an easy task to interpret an electrochemical behaviour correctly. Recent discoveries regarding redox properties of membrane-bound dehydrogenases along with extensive investigations of direct electron transfer (DET) or direct bioelectrocatalysis with these enzymes are summarized in this review. The main aim of this review is to draw general conclusions about possible electronic coupling paths of these enzymes on various interfaces via direct electron transfer or direct bioelectrocatalysis. A short overview of the metabolism and respiration chain in Gluconobacter relevant to interfacial electrochemistry is given. Biosensor devices based on DET or direct bioelectrocatalysis using membrane-bound dehydrogenases from Gluconobacter sp. are described briefly with the emphasis given on practical applications of preparing enzymatic biofuel cells. Moreover, interfacial electrochemistry of Gluconobacter oxydans related to the construction of microbial biofuel cells is also discussed.  相似文献   
956.
The synthesis and crystal structure (100 K) of the title compound, [Fe(C10H11BrN3OS)2]NO3·H2O, is reported. The asymmetric unit consists of an octahedral [FeIII(HL)2]+ cation, where HL? is H-5-Br-thsa-Et or 5-bromosalicylaldehyde 4-ethylthiosemicarbazonate(1?) {systematic name: 4-bromo-2-[(4-ethylthiosemicarbazidoidene)methyl]phenolate}, a nitrate anion and a noncoordinated water molecule. Each HL? ligand binds via the thione S, the imine N and the phenolate O atom, resulting in an FeIIIS2N2O2 chromophore. The ligands are orientated in two perpendicular planes, with the O and S atoms in cis and the N atoms in trans positions. This [Fe(HL)2](anion)·H2O compound contains the first known cationic FeIII entity containing two salicylaldehyde thiosemicarbazone derivatives. The FeIII ion is in the high-spin state at 100 K. In addition, a comparative IR spectroscopic study of the free ligand and the ferric complex is presented, demonstrating that such an analysis provides a quick identification of the degree of deprotonation and the coordination mode of the ligand in this class of metal compounds. The variable-temperature magnetic susceptibility measurements (5–320 K) are consistent with the presence of a high-spin FeIII ion with a zero-field splitting D = 0.439 (1) cm?1.  相似文献   
957.
958.
Matrix-assisted laser desorption ionization was performed on an external ion source Fourier transform ion cyclotron resonance mass spectrometer equipped with a 7-T superconducting magnet to analyze end groups of synthetic polymers in the mass range from 500 to 5000 u. Native, perdeutero methylated, propylated, and acetylated polyethylene glycol and polyvinyl pyrrolidone with unknown end-group elemental composition were investigated in the mass range up to 5000 u by using a 2,5-dihydroxybenzoic acid matrix. A small electrospray setup was used for the deposition of the samples. Two methods to process data were evaluated for the determination of end groups from the measured masses of the component molecules in the molecular weight ranges: a regression method and an averaging method. The averaging method is demonstrated to allow end-group mass determinations with an accuracy within 3 mu for the molecular weight range from 500 to 1400 and within 20 mu for the molecular weight range from 3400 to 5000. This is sufficient to identify the elemental composition of end groups in unknown polymer samples.  相似文献   
959.
Summary The separation of poly(styrene-co-acrylonitrile) is presented in open tubular stainless steel columns and columns packed with non-porous glass beads. Furthermore separation on a short silica packed column proved to be better than on a similar longer column. A definition of the term high performance precipitation liquid chromatography is suggested for gradient elution with sample injection into a starting eluent which is a nonsolvent for the copolymer under investigation. The choice of a suitable solvent-nonsolvent combination is of essential importance.  相似文献   
960.
Monopolar surfaces   总被引:13,自引:0,他引:13  
Following the development of a methodology for determining the apolar components as well as the electron donor and the electron acceptor parameters of the surface tension of polar surfaces, surfaces of a number of quite common materials were found to manifest virtually only electron donor properties and no, or hardly, any electron acceptor properties. Such materials may be called monopolar; they can strongly interact with bipolar materials (e.g., with polar liquids such as water); but one single polar parameter of a monopolar material cannot contribute to its energy of cohesion. Monopolar materials manifesting only electron acceptor properties also may exist, but they do not appear to occur in as great an abundance. Among the electron donor monopolar materials are: polymethylmethacrylate, polyvinylalcohol, polyethyleneglycol, proteins, many polysaccharides, phospholipids, nonionic surfactants, cellulose esters, etc. Strongly monopolar materials of the same sign repel each other when immersed or dissolved in water or other polar liquids. The interfacial tension between strongly monopolar surfaces and water has a negative value. This leads to a tendency for water to penetrate between facing surfaces of a monopolar substance and hence, to repulsion between the molecules or particles of such a monopolar material, when immersed in water, and thus to pronounced solubility or dispersibility. Monopolar repulsion energies can far outweigh Lifshitz-van der Waals attractions as well as electrostatic and "steric" repulsions. In aqueous systems the commonly observed stabilization effects, which usually are ascribed to "steric" stabilization, may in many instances be attributed to monopolar repulsion between nonionic stabilizing molecules. The repulsion between monopolar molecules of the same sign can also lead to phase separation in aqueous solutions (or suspensions), where not only two, but multiple phases are possible. Negative interfacial tensions between monopolar surfactants and the brine phase can be the driving force for the formation of microemulsions; such negative interfacial tensions ultimately decay and stabilize at a value very close to zero. Strongly monopolar macromolecules or particles surrounded by oriented water molecules of hydration can still repel each other, albeit to an attenuated degree. This repulsion was earlier perceived as caused by "hydration pressure". A few of the relevant colloid and surface phenomena are reviewed and re-examined in the light of the influence of surface monopolarity on these phenomena.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号