首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14698篇
  免费   2409篇
  国内免费   1888篇
化学   10871篇
晶体学   176篇
力学   832篇
综合类   141篇
数学   1829篇
物理学   5146篇
  2024年   48篇
  2023年   315篇
  2022年   515篇
  2021年   495篇
  2020年   597篇
  2019年   597篇
  2018年   476篇
  2017年   390篇
  2016年   691篇
  2015年   665篇
  2014年   858篇
  2013年   1083篇
  2012年   1287篇
  2011年   1275篇
  2010年   931篇
  2009年   788篇
  2008年   909篇
  2007年   871篇
  2006年   802篇
  2005年   729篇
  2004年   539篇
  2003年   480篇
  2002年   498篇
  2001年   436篇
  2000年   311篇
  1999年   298篇
  1998年   273篇
  1997年   244篇
  1996年   254篇
  1995年   211篇
  1994年   199篇
  1993年   167篇
  1992年   139篇
  1991年   126篇
  1990年   91篇
  1989年   95篇
  1988年   64篇
  1987年   42篇
  1986年   33篇
  1985年   44篇
  1984年   44篇
  1983年   22篇
  1982年   20篇
  1981年   13篇
  1980年   13篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
11.
12.
Shi  D.  Feng  J.  Wang  J.  Zhao  W.  Li  X. 《Kinetics and Catalysis》2020,61(5):750-757
Kinetics and Catalysis - A series of Cu-SSZ-13@CeO2 catalysts with surface modification with CeO2 was prepared by the modified self-resemble method based on the one-pot synthesized Cu-SSZ-13...  相似文献   
13.
Two new homosecoiridoids, named loniaceticiridoside (1) and lonimalondialiridoside (2), were isolated from an aqueous extract of the flower buds of Lonicera japonica. Their structures including the absolute configuration were determined by extensive spectroscopic studies, especially by 2D NMR and CD data analysis. A proposed biosynthetic pathway and preliminary investigations of the biological activity of compounds 1 and 2 are also discussed.  相似文献   
14.
Developing clean and sustainable energies as alternatives to fossil fuels is in strong demand within modern society. The oxygen evolution reaction (OER) is the efficiency-limiting process in plenty of key renewable energy systems, such as electrochemical water splitting and rechargeable metal–air batteries. In this regard, ongoing efforts have been devoted to seeking high-performance electrocatalysts for enhanced energy conversion efficiency. Apart from traditional precious-metal-based catalysts, nickel-based compounds are the most promising earth-abundant OER catalysts, attracting ever-increasing interest due to high activity and stability. In this review, the recent progress on nickel-based oxide and (oxy)hydroxide composites for water oxidation catalysis in terms of materials design/synthesis and electrochemical performance is summarized. Some underlying mechanisms to profoundly understand the catalytic active sites are also highlighted. In addition, the future research trends and perspectives on the development of Ni-based OER electrocatalysts are discussed.  相似文献   
15.
Total glucosides of paeony are the active constituents of Paeoniae Radix Alba. In this study, a novel strategy was proposed to find more metabolites and the differences between paeoniflorin, albiflorin and total glucosides of paeony (TGP). This strategy was characterized as follows: firstly, the animals were divided into three groups (paeoniflorin, albiflorin and TGP) to identify the source of TGP metabolites from paeoniflorin or albiflorin; secondly, a generic information‐dependent acquisition scan for the low‐level metabolites was triggered by the multiple mass defect filter and dynamic background subtraction; thirdly, the metabolites were identified with a combination of data‐processing methods including mass defect filtering, neutral loss filtering and product ion filtering; finally, a comparative study was used in the metabolism of paeoniflorin, albiflorin and TGP. Based on the strategy, 18 metabolites of TGP, 10 metabolites of paeoniflorin and 13 metabolites of albiflorin were identified respectively. The results indicated that the hydrolysis, conjugation reaction and oxidization were the major metabolic pathways, and the metabolic sites were the glycosidic linkage, the ester bond and the benzene ring. This study is first to explore the metabolism of TGP, and these findings enhance our understanding of the metabolism and the interactions of paeoniflrin and albiflorin in TGP. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
16.
We reveal that for a realistic system, interference effects are obtained such as the suppression of central line and inner sidebands and the narrowing of the outer fluorescence sidebands. For this purpose, we consider a spontaneous decay from an excited state to a metastable state when the excited and metastable states are resonantly coupled to an auxiliary metastable state by a laser field and a microwave field, respectively. The fluorescence spectrum evolves from a five-peaked structure into a doublet of ultrasharp lines as the ratio of the laser field Rabi frequency to the microwave Rabi frequency is decreased. The physical origin is presented in terms of dressed states.  相似文献   
17.
用经验赝势方法计算了体ZnSe以及ZnSe/GaAs单异质结系统中ZnSe外延层г、X、L等特殊对称点导带底能量随压力的变化。结果表明,同Si、Ge、GaAs等半导体材料不同,ZnSe的X点导带底具有正的压力系数,但比г点的压力系数小,这是ZnSe材料以及ZnSe基异质结构材料发生直接禁带向间接禁带的转变时所需转变压力较大的根本原因。研究了ZnSe/GaAs异质结构中晶格失配造成的应变对外延层г、X、L对称点压力系数的影响,表明这种晶格失配造成的应变可以极大地减小ZnSe外延层材料由直接禁带向间接禁带的转变压力。  相似文献   
18.
In this paper, both low order and high order extensions of the Iyengar type inequality are obtained. Such extensions are the best possible in the same sense as that of the Iyengar inequality. hzrthermore, the Chebyshev central algorithms of integrals for some function classes and some related problems are also considered and investigated.  相似文献   
19.
Yanmao Shi  Ping Wu  Pan Du  Chenxin Cai 《Acta Physico》2006,22(10):1227-1233
A new electroactive polynuclear inorganic compound of rare earth metal, gadolinium hexacyanoferrate (GdHCF), was prepared and characterized using the techniques of FTIR spectroscopy, thermogravimetric analysis (TG), UV-Vis spectrometry, X-ray photoelectron spectroscopy (XPS), ICP atomic emission spectroscopy, and EDX. The results of ICP atomic emission spectroscopy, EDX, and TGA indicated that the prepared GdHCF sample had a stoichiometry of NaGdFe(CN)6·12H2O (when GdHCF was prepared in NaCl solution). The FTIR spectrum of GdHCF showed that there were two types of water molecules in the structure of GdHCF: one was the interstitial water (5 H2O), which resulted from the association of water due to H-bonding, and the other was water coordinated with Gd (7 H2O). The results obtained using XPS showed that the oxidation state of Fe and Gd in the GdHCF sample was +2 and +3, respectively. GdHCF was immobilized on the surface of spectroscopically pure graphite (SG) electrode forming the GdHCF/SG electrode, and the solid-state electrochemistry of the resultant electrode was studied using cyclic voltammetry. The cyclic voltammetric results indicated that the GdHCF/SG electrode exhibited a pair of well-defined and stable redox peaks with the formal potential of E0′=(197±3) mV. The effects of the concentration of the supporting electrolyte on the electrochemical characteristics of GdHCF were studied, and the results showed that the value of E0′ increased linearly with the activity of the cationic ion of the supporting electrolyte (lgaNa+), with a slope of 54.1 mV, which may become a novel method for determining the activity of Na+ in solution. Further experimental results indicated that GdHCF had electrocatalytic activities toward the oxidation of dopamine (DA) and ascorbic acid (AA), and the electrocatalytic current increased linearly with the concentration of DA (or AA) in the range of 1.0–10.0 mmol·L?1 (for DA) or 0.5–20.0 mmol·L?1 (for AA).  相似文献   
20.
We present the procedure of exactly solving the Izergin–Korepin model with open boundary conditions by using the algebraic Bethe ansatz, which include constructing the multi-particle state and achieving the eigenvalue of the transfer matrix and corresponding Bethe equations. We give a proof about our conclusions on the multi-particle state based on an assumption. When the model is Uq(su(2)) quantum invariant, our results agree with that obtained by analytic Bethe ansatz method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号