首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   339篇
  免费   5篇
  国内免费   1篇
化学   192篇
晶体学   4篇
力学   12篇
数学   44篇
物理学   93篇
  2024年   1篇
  2023年   1篇
  2022年   5篇
  2021年   12篇
  2020年   7篇
  2019年   6篇
  2018年   8篇
  2017年   16篇
  2016年   17篇
  2015年   6篇
  2014年   17篇
  2013年   37篇
  2012年   23篇
  2011年   38篇
  2010年   14篇
  2009年   7篇
  2008年   22篇
  2007年   16篇
  2006年   10篇
  2005年   16篇
  2004年   7篇
  2003年   13篇
  2002年   6篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   7篇
  1995年   5篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1988年   2篇
  1987年   5篇
  1985年   1篇
  1972年   2篇
排序方式: 共有345条查询结果,搜索用时 0 毫秒
81.
Laboratory batch sorption-desorption and column experiments were performed to better understand the effects of microbial exopolymeric substances (EPS) on Cr(III) sorption/desorption rates in the soil-water system. The experiments were carried out in two different modes: one mode (sorption) in which Cr(III) and EPS were applied simultaneously, and the other (desorption) included the sequential application of Cr(III) and EPS to the soil-water system. The batch sorption and desorption experiments showed that, while chromium(III) desorption was significantly enhanced in the presence of EPS relative to non-EPS-containing systems, the desorption rates were much smaller than the sorption rates, and the fraction dissolved by EPS accounted for only a small portion of the total chromium initially sorbed onto soil minerals. Similarly, the column experiments suggested that, while the microbial EPS led to an increase in Cr dissolution relative to non-EPS-containing systems, only a small portion of the total chromium initially added to the soil was mobilised. The differences observed in Cr sorption and desorption rates can be explained through the very low solubility and strong interactions of chromium species with soil minerals as well as the mass transfer effects associated with low diffusion rates. The overall results suggest that, while microbial EPS may play an important role in microbial Cr(VI) treatment in sub-surface systems due to the formation of soluble Cr-EPS complexes, the extent and degree of Cr mobilisation are highly dependent on the type of initial Cr sorption.  相似文献   
82.
In this article, we study the reduced bifurcation equations of the nonlinear delay differential equations with periodic delays, which models the machine tool chatter with continuously modulated spindle speed to determine the periodic solutions and analyze the tool motion. Analytical results show both modest increase of stability and existence of periodic solutions close to the new stability boundary.  相似文献   
83.
The mathematical models representing machine tool chatter dynamics have been cast as differential equations with delay. The suppression of regenerative chatter by spindle speed variation is attracting increasing attention. In this paper, we study nonlinear delay differential equations with periodic delays which models the machine tool chatter with continuously modulated spindle speed. The explicit time-dependent delay terms, due to spindle speed modulation, are replaced by state dependent delay terms by augmenting the original equations. The augmented system of equations is autonomous and has two pairs of pure imaginary eigenvalues without resonance. The reduced bifurcation equation is obtained by making use of Lyapunov–Schmidt Reduction method.  相似文献   
84.
The irreversibility of anion intercalation-deintercalation is a fundamental issue in determining the cycling stability of a dual-ion battery (DIB). In this work, we demonstrate that using a partially fluorinated carbonate solvent can drive a beneficial fluorinated secondary interphase layer formation. Such layer facilitates reversible anion (de−)intercalation processes by impeding solvent molecule co-intercalation and the associated graphite exfoliation. The enhanced reversibility of anion transport contributes to the overall cycling stability for a Zn-graphite DIB—a high Coulombic efficiency of 98.5 % after 800 cycles, with an attractive discharge capacity of 156 mAh g−1 and a mid-point discharge voltage of ≈1.7 V (at 0.1 A g−1). In addition, the formed fluorinated secondary interphase suppresses the self-discharge behavior, preserving 29 times of the capacity retention rate compared to the battery with a commonly used carbonate solvent, after standing for 24 hours. This work provides a simple and effective strategy for addressing the critical challenges in graphite-based DIBs and contributes to fundamental understanding to help accelerate their practical application.  相似文献   
85.
86.
In this study, the normal (σxσyσz) and shear stress (τxyτyzτzx) distributions occurring in a bi-adhesively bonded T-joint with was investigated via a non-linear three dimensional finite element analysis. For this purpose, first of all, using 2024-T3 aluminum alloy as the adherend and the support, a two-part paste (DP 460) and a film type (SBT 9244) as adhesive, two different types of T-joint samples (single-adhesively bonded T-joint and bi-adhesively bonded T-joint) were produced for experimental studies. After experimental studies on the three different T-joint types were conducted, stress analyses in the T-joints were performed with a three-dimensional finite element analysis by considering the geometrical non-linearity and the material non-linearities of the adhesive (DP460 and SBT9244) and adherend (AA2024-T3). Finally, for a given adherend, the lower the stiffness of the adhesive used in the overlap, the lower the stress concentration, leading to potentially higher joint strength. The use of relatively low stiffness adhesives at the ends of the overlap in a bi-adhesive can decrease the stress concentration and, therefore, potentially lead to higher joint strength.  相似文献   
87.
γ-Fe2O3 (maghemite)-silica nanocomposite particles were synthesized using a sol-gel method. The condensation products of 3-glycidoxy propyltrimethoxy silane (GPTMS) and nitrilotriacetic acid (NTA) were introduced onto the surfaces of the γ-Fe2O3-silica nanocomposite particles and subsequently, these modified surfaces were complexed with cobalt (Co+2) metal ions. A possibility of using these surface modified γ-Fe2O3-silica particles for the purification of 6×histidine tagged recombinant benzaldehyde lyase (BAL, EC 4.1.2.38) based on magnetic separation was investigated. X-ray diffraction (XRD), thermal analysis, and vibrating sample magnetometry (VSM) methods were used to characterize the surface modified superparamagnetic γ-Fe2O3 (maghemite)-silica nanoparticles. XRD (Scherer's equation) results indicate that the primary particle size of maghemite was around 11 nm. Magnetic characterization results confirmed that the γ-Fe2O3 (maghemite)-silica nanoparticles were superparamagnetic. According to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results, these superparamagnetic nanoparticles specifically capture 6×His-tagged BAL from crude extract of Escherichia coli (E. coli) BL21(DE3)pLysS/BALHIS. This study shows that the surface modified γ-Fe2O3 (maghemite)-silica nanoparticles are eligible for immobilized metal-ion affinity adsorption for histidine tagged recombinant proteins with its high capacity (3.16±0.4 mg/g) and selectivity.  相似文献   
88.
Yücel Y  Demir C 《Talanta》2004,63(2):451-459
Chemical characterisation has been carried out on 25 quarry marbles collected from Marmara, Aegean and Thrace regions of Turkey. Ten elements were determined by capillary electrophoresis (CE). Principal component analysis and cluster analysis techniques were utilised to define grouping of different marble samples. These techniques showed that the analysed marbles were differentiable mainly by provenance. Experimental conditions such as pH, applied voltage and concentration of α-hydroxyisobutyric acid (HIBA) were optimised to achieve the best separation of metal ions using central composite design. The optimum pH 3.7, applied voltage 15 kV and concentration of HIBA 10 mM were found to provide the best separation for all metal ions investigated.  相似文献   
89.
90.
Alumina ceramics have found wide range of applications from semiconductors, communication technologies, medical devices, automotive to aerospace industries. Processing of alumina ceramics is rather difficult due to its high degree of brittleness, hardness, low thermal diffusivity and conductivity. Rapid improvements in laser technologies in recent years make the laser among the most convenient processing tools for difficult-to-machine materials such as hardened metals, ceramics and composites. This is particularly evident as lasers have become an inexpensive and controllable alternative to conventional hole drilling methods. This paper reports theoretical and experimental results of drilling the alumina ceramic with thicknesses of 5 mm and 10.5 mm using milisecond pulsed Nd:YAG laser. Effects of the laser peak power, pulse duration, repetition rate and focal plane position have been determined using optical and Scanning Electron Microscopy (SEM) images taken from cross-sections of the drilled alumina ceramic samples. In addition to dimensional analysis of the samples, microstructural investigations have also been examined. It has been observed that, the depth of the crater can be controlled as a function of the peak power and the pulse duration for a single laser pulse application without any defect. Crater depth can be increased by increasing the number of laser pulses with some defects. In addition to experimental work, conditions have been simulated using ANYS FLUENT package providing results, which are in good agreement with the experimental results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号