首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2451篇
  免费   53篇
  国内免费   7篇
化学   1677篇
晶体学   7篇
力学   74篇
数学   243篇
物理学   510篇
  2023年   16篇
  2022年   36篇
  2021年   56篇
  2020年   38篇
  2019年   20篇
  2018年   19篇
  2017年   19篇
  2016年   46篇
  2015年   38篇
  2014年   46篇
  2013年   134篇
  2012年   131篇
  2011年   148篇
  2010年   94篇
  2009年   63篇
  2008年   161篇
  2007年   165篇
  2006年   143篇
  2005年   142篇
  2004年   114篇
  2003年   103篇
  2002年   83篇
  2001年   53篇
  2000年   34篇
  1999年   42篇
  1998年   28篇
  1997年   35篇
  1996年   26篇
  1995年   26篇
  1994年   35篇
  1993年   33篇
  1992年   33篇
  1991年   19篇
  1990年   13篇
  1988年   14篇
  1987年   13篇
  1986年   11篇
  1985年   28篇
  1984年   23篇
  1983年   21篇
  1982年   23篇
  1981年   25篇
  1980年   14篇
  1979年   18篇
  1977年   12篇
  1976年   12篇
  1975年   17篇
  1974年   10篇
  1973年   13篇
  1970年   9篇
排序方式: 共有2511条查询结果,搜索用时 46 毫秒
61.
Catalysis of the beta-elimination reaction of N-[2-(4-pyridyl)ethyl]quinuclidinium (1) and N-[2-(2-pyridyl)ethyl]quinuclidinium (2) by Zn(2+) and Cd(2+) in OH(-)/H(2)O (pH = 5.20-6.35, 50 degrees C, and mu = 1 M KCl) has been studied. In the presence of Zn(2+), the elimination reactions of both isomers occur from the Zn(2+)-complexed substrates (C). The equilibrium constants for the dissociation of the Zn(2+)-complexes are as follows: K(d) = 0.012 +/- 0.003 M (isomer 1) and K(d) = 0.065 +/- 0.020 M (isomer 2). The value of k(C)(H2O) for isomer 1 is 4.81 x 10(-6) s(-1). For isomer 2 both the rate constants for the "water" and OH(-)-induced reaction of the Zn(2+)-complexed substrate could be measured, despite the low concentration of OH(-) in the investigated reaction mixture [k(C)H2O)= 1.97 x 10(-6) s(-1) and k(C)(OH-)= 21.9 M(-1) s(-1), respectively]. The measured metal activating factor (MetAF), i.e., the reactivity ratio between the complexed and the uncomplexed substrate, is 8.1 x 10(4) for the OH(-)-induced elimination of 2. This high MetAF can be compared with the corresponding proton activating factor (Alunni, S.; Conti, A.; Palmizio Errico, R. J. Chem. Soc., Perkin Trans. 2 2000, 453), PAF = 1.5 x 10(6) and is in agreement with an E1cb irreversible mechanism (A(xh)D(E)* + D(N)) (Guthrie, R. D.; Jencks, W. P. Acc. Chem. Res. 1989, 22, 343). A value of k(C)(H2O)>or= 23 x 10(-7) s(-1) is estimated for the Cd(2+)-complexed isomer 2, while catalysis by Cd(2+) has not been observed for isomer 1.  相似文献   
62.
In a previous paper, we report a preliminary DSC study on bovine (BSA) and human (HSA) serum albumins. However, at accurate HPLC analysis the commercial proteins show three peaks: Fraction V-I, probably globulins (as declared by the producers), Fraction V-II (about 15–18% of the product) and Fraction V-III that represents pure BSA or HSA. A hypothesis is that the Fraction II is a covalent dimer, or trimer or a mixture of both, generated during the scalf-life of the commercial product. Denaturation enthalpies of the purified Fraction V-III and Fraction V-II of BSA, have been determined calorimetrically, at changing thepH, and the results of both compared with those obtained on the untreated protein. Few calorimetric experiments have been also carried on a BSA monomer derivative with sulphidril group protected. Computer program have been developed for the deconvolution of exo- and endothermic effects and for the analysis of thermal denaturation profiles.  相似文献   
63.
The compound [(HAlN-i-Pr)2(H2AlNH-i-Pr)3] has been prepared and the crystal and molecular structure determined by an X-ray analysis, carried out with three-dimensional data collected on a diffractometer. The molecule is made up of a cyclohexane-type ring, [(HAlN-i-Pr)2(H2AlNH-i-Pr)], in skewboat conformation, on each side of which is bonded an -H2AlNH-i-Pr- bridging unit between a nitrogen atom and an aluminum atom of the ring. The molecule lies on a binary axis of the crystal, but this symmetry is fulfilled only by a statistical orientation of the asymmetric molecular units (the statistical model is not however completely defined). The AlN bond lengths range from 1.901 to 1.985 Å; the average NC bond length is 1.527(9) Å. Main crystal data are: monoclinic space group C2/c; a = 10.15(2), b = 21.64(3), c = 12.84(2) Å, β = 111.9(5)°; Z = 4; calculated density 1.095 g/cm3. The structure was solved by direct methods and block-matrix least-squares converged to an R value of 5.6%.  相似文献   
64.
Cycloadditions of benzonitrile oxide and mesitonitrile oxide to N-methylindole and indole yield the acid sensitive cycloadducts 1 a-d with high regioselectivity. With N-carbethoxyindole the stable cycloadducts 1 e,f and minor amounts of the regioisomeric 2 e,f are isolated. The electron withdrawing substituent reduces both the regioselectivity and the reactivity of the cycloadditions.Frontier orbital considerations, based on MINDO/3 calculations, allow elucidation of the observed changes in reactivity and regiochemistry.  相似文献   
65.
66.
Ab initio SCF calculations with the STO -3G basis set have been performed to investigate the structural, energetic, and electronic properties of mixed water–uracil dimers formed at the six hydrogen-bonding sites in the uracil molecular plane. Hydrogen-bond formation at three of the carbonyl oxygen sites leads to cyclic structures in which a water molecule bridges N1? H and O2, N3? H and O2, and N3? H and O4. Open structures form at O4, N1? H, and N3? H. The two most stable structures, with energies of 9.9 and 9.7 kcal/mole, respectively, are the open structure at N1? H and the cyclic one at N1? H and O2. These two are easily interconverted, and may be regarded as corresponding to just one “wobble” dimer. At 1 kcal/mole higher in energy is another “wobble” dimer consisting of an open structure at N3? H and a cyclic structure at N3? H and O4. The third cyclic structure at N3? H and O2 collapses to the “wobble” dimer at N3? H and O4. The two “wobble” dimers are significantly more stable than the open dimer formed at O4, which has a stabilization energy of 5.4 kcal/mole. Uracil is a stronger proton donor to water through N1? H than N3? H, owing to a more favorable molecular dipole moment alignment when association occurs through H1. Hydration of uracil by additional water molecules has also been investigated. Dimer stabilization energies and hydrogen-bond energies are nearly additive in most 2:1 water:uracil structures. There are three stable “wobble” trimers, which have stabilization energies that vary from 7 to 9 kcal/mole per water molecule. Hydrogen-bond strengths are slightly enhanced in 3:1 water:uracil structures, but the cooperative effect in hydrogen bonding is still relatively small. The single stable water–uracil tetramer is a “wobble” tetramer, with two water molecules which are relatively free to move between adjacent hydrogen-bonding sites, and a stabilization energy of approximately 8 kcal/mole per water molecule. Within the rigid dimer approximation, successive hydration of uracil is limited to the addition of one, two, or three water molecules.  相似文献   
67.
Two industrial scale, “ROBO” type 60Co gamma irradiation facilities have recently been put into operation in Syria and Peru, and the dosimetry commissioning of both plants have been carried out to determine dose distribution within products and to calculate plant parameters such as efficiency, dose uniformity ratio and throughput. There are some design modifications between the two plants in connection with the location of the carriers with respect to the source plaque and also to each other. The effect of these construction modifications on the plant parameters is discussed in the analysis of the dose distribution data measured in the carriers with depth and height among the four irradiation rows on both sides of the source plaque. The plant parameters were also calculated for different product densities using the technical data of the facilities, and the calculated and measured results were compared to each other.  相似文献   
68.
Gutés A  Céspedes F  Alegret S  Del Valle M 《Talanta》2005,66(5):1187-1196
A sequential injection analysis (SIA) system was developed with the aim of obtaining an automatic and versatile way to prepare standards needed in the study of systems with higher dimensional sensor signals. To illustrate this, different analytical techniques were used in determinations of several analytes. Automated potentiometric calibrations of different potentiometric sensors, with and without interference, were carried out. Useful determinations of selectivity coefficients with two degrees of freedom were obtained. Simultaneous voltammetric determinations have also been done. Firstly, simultaneous determinations of lead and cadmium, using epoxy-graphite composite as the working electrode, have enabled a separate calibration for each metal to be obtained. Next, a voltammetric electronic tongue was designed and applied to the determination of oxidizable species. The use of artificial neural networks has solved the overlapped signal of ascorbic acid, 4-aminophenol and 4-acetamidophenol (paracetamol). A set of 63 data points was prepared automatically and has facilitated the training of an electronic tongue for these three analytes. Accurate predictions of test solutions, in the range of 12–410 μM for ascorbic acid, 17–530 μM for 4-aminophenol and 10–420 μM for paracetamol, have been achieved with RMSEs lower than 0.10 μM.  相似文献   
69.
Cytochromes P-450 are members of a superfamily of hemoproteins involved in the oxidative metabolism of various physiological and xenobiotic compounds in eukaryotes and prokaryotes. The multiplicity of this group of enzymes has been widely studied by chromatographic techniques, mainly high-performance liquid chromatography (HPLC). Because these enzymes are membrane-bound proteins, sample preparation for chromatographic separation of P-450 enzymes requires a solubilization step. The sample-preparation procedures are critical, because detergents affect not only the efficiency of protein solubilization but also their further chromatographic resolution. Trout liver microsomes have been taken here as a model sample to investigate iron speciation in cytochrome P-450. Trouts were treated intraperitoneally with -naphthoflavone, a potent inducer of some P-450 enzymes, and a microsomal suspension containing 7.4±0.1 nmol mL–1 P-450 enzymes was obtained by ultracentrifugation. Lubrol PX was selected as detergent for solubilization, resulting in about 90% solubilization recovery. The solubilized cytochromes P-450 were further separated by AE–FPLC, with UV detection, or coupled to ICP–MS with an octapole reaction system, ICP–(ORS)MS (monitoring Fe signals at masses 54, 56, and 57). A sampling procedure and chromatographic conditions are developed and were successfully applied to iron speciation in trout liver P-450 enzymes. ICP–(ORS)MS detection of P-450 enzymes is Fe-specific and so will give accurate information on the prosthetic group of the protein, which can constitute an advantageous alternative to classical methods for detection of these hemoproteins.  相似文献   
70.
Earlier work of potentiometric Ion-selective electrodes (ISEs) sensitive to nonionic surfactants of the polyethoxylate type is further extended. The ISEs constructed were all-solid-state sensors with plasticized PVC membranes. The sensing material was a tetraphenylborate salt of the barium complex with a polyethoxylate nonionic surfactant. As membrane component, the combinations of two polyethoxylates of the nonylphenoxy type, which differed in the number of oxyethylene units (5 or 12), and two different plasticizers, (o-nitrophenyloctyl ether and o-nitrophenylphenyl ether), were tested. The response of these electrodes to different nonionic surfactants and the interference effect of several species has been evaluated. For all the types of tested electrodes, the sensitivities shown were ca. 30.0 mV dec(-1) and the limit of detection, ca. 10(-5) M, when a nonylphenoxyde with 12 oxyethylene units was used as standard. The membrane with the best response characteristics was then applied in potentiometric titrations of this kind of surfactants in the presence of Ba(2+) ion and using tetraphenylborate as the titrant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号