首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   1篇
化学   165篇
晶体学   4篇
物理学   17篇
  2022年   4篇
  2021年   1篇
  2019年   2篇
  2016年   2篇
  2014年   1篇
  2013年   4篇
  2012年   11篇
  2011年   4篇
  2010年   6篇
  2009年   7篇
  2008年   7篇
  2007年   13篇
  2006年   11篇
  2005年   6篇
  2004年   15篇
  2003年   6篇
  2002年   4篇
  2001年   8篇
  2000年   4篇
  1999年   5篇
  1998年   4篇
  1996年   1篇
  1994年   3篇
  1993年   2篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1987年   2篇
  1986年   1篇
  1985年   5篇
  1984年   5篇
  1983年   4篇
  1982年   4篇
  1981年   3篇
  1980年   6篇
  1979年   4篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
排序方式: 共有186条查询结果,搜索用时 31 毫秒
1.
The lithium polyfluorobenzenesulphinates, Li O2SR (R = C6F5, p-HC6F4, m-HC6F4, or o-HC6F4), and the dilithium tetrafluorobenzenedisulphinates, p- and o-(LiO2S)2C6F4, have been prepared by reaction of the appropriate polyfluoroaryllithium compounds with sulphur dioxide. All compounds were isolated as hydrates and gave the corresponding S-benzylthiouronium salts on treatment with S-benzylthiouronium chloride. From reactions of the lithium sulphinates with suitable mercuric salts in water, generally at room temperature, the derivatives RHgX (R = C6F5, X = Cl, Br, CH3CO2, or PhSO2; R = p-HC6F4, X = Cl, Br, or CH3CO2; R = m-HC6F4, X = Cl or Br; R = o-HC6F4, X = Cl), p-(XHg)2C6F4 (X = Cl, Br, or CH3CO2), and o-(XHg)2C6X4 (X = Cl or Br) have been prepared. Similarly, the bispolyfluorophenylmercurials R2Hg (R = C6F5, p-HC6F4, or m-HC6F4) have been prepared from the corresponding lithium sulphinates and either mercuric salts or polyfluorophenylmercuric halides in aqueous t-butanol. A possible mechanism for the sulphur dioxide elimination reactions is discussed.  相似文献   
2.
A numerical technique is described, which follows the motion of the entire electron distribution in a storage ring laser. The laser gain and electron distribution parameters such as energy spread, bunch length, damping rates, and containment time are discussed, both with and without the use of the gain expansion technique. The limits of validity of the onedimensional approximation are defined.  相似文献   
3.
The complexes [K(H2O)2LnL2] (Ln = La or Nd; L = 1,2‐benzenedisulfonate) and [K(H2O)Yb(H2O)4L2] were initially isolated fortuitously from attempts to prepare the corresponding Ln2L3 complexes from Ln2O3 and H2L in water. Indeed the bulk products from these reactions have the composition Ln2L3. Subsequently, deliberate syntheses by reacting equimolar amounts of Ln2L3 with K2L in water gave the complexes in good yield. X‐ray crystal structures of [K(H2O)2LnL2] (Ln = La or Nd) showed the complexes to be isostructural with a two dimensional polymeric network structure in which LnL2 units are linked into chains crosslinked by potassium ions. Each Ln is nine coordinate with solely sulfonate oxygen donor atoms. Between adjacent lanthanoid ions there are three different types of sulfonate bridges and two examples of each. Most noteworthy is highly unsymmetrical bridging through μ‐η2‐sulfonate oxygen atoms. Consequently, one Ln–O bond is ca. 0.5 Å longer than the other eight. Potassium is nine‐coordinate with seven sulfonate oxygen atoms and two aqua ligands, and surprisingly <K–O(sulfonate)> is much longer than <K–O(H2O)>. Pairs of potassium ions are linked by two μ‐η2‐sulfonate oxygen atoms, which are unsymmetrically bridging. The structure of [K(H2O)Yb(H2O)4L2] comprises discrete tetranuclear units containing two independent ytterbium ions, each coordinated by four water molecules and two chelating (via seven membered rings) disulfonate ligands, and two potassium ions, each coordinated by six sulfonate oxygen atoms and a water molecule. For each potassium, four of the coordinated sulfonate oxygen atoms are from sulfonate ligands bonded to one ytterbium atom and two from sulfonate ligands attached to the other ytterbium atom. In contrast to the Nd and La complexes, <K–O(sulfonate)> is shorter than <K–O(H2O)>.  相似文献   
4.
The chemistry of the anions dicyanamide and tricyanomethanide (dca and tcm, respectively) has produced a plethora of discoveries over the past few decades, particularly in relation to transition-metal coordination polymers with magnetic coupling. Over recent years there have been an increasing number of reports of heterofunctionalised cyano-containing anions, typically derivatives of dicyanomethanide. Our own group has been particularly concerned with the amide- and nitroso-functionalised anions carbamoyldicyanomethanide (cdm) and dicyanonitrosomethanide (dcnm), respectively. This feature article examines the fascinating diversity of materials and complexes that can be obtained using small cyano anions, ranging from coordination polymers to heterometallic clusters and hydrogen bonding networks. In particular, we focus on results from our own laboratories in the past few years. The magnetic properties of these materials are briefly discussed.  相似文献   
5.
Direct thermally induced reactions between rare earth metals (Ln = Y,Ce, Dy, Ho, and Er) activated by Hg metal and 3,5‐diphenylpyrazole (Ph2pzH) or 3,5‐di‐tert‐butylpyrazole (tBu2pzH) yielded either homoleptic complexes [Lnn(R2pz)3n] or a heteroleptic complex [Ln(Ph2pz)3(Ph2pzH)2] From Ph2pzH, [Ce3(Ph2pz)9], [Dy2(Ph2pz)6], [Ho2(Ph2pz)6], and [Y(Ph2pz)3(Ph2pzH)2] were isolated. The first has a bowed trinuclear Ce3 backbone with two η2 pyrazolate ligands on the terminal metal atoms and one on the middle, and bridging by both μ‐η22 and μ‐η25 ligands between the terminal and the central Ce atoms. Although both the Dy and Ho complexes are dinuclear, the former has the rare μ‐η21 bridging whilst the latter has μ‐η22 bridging. Thus the dysprosium complex is seven‐coordinate and the holmium is eight‐coordinate, in contrast to any correlation with Ln3+ ionic radii, and the series has a remarkable structural discontinuity. The heteroleptic Y complex is eight coordinate with three chelating Ph2pz and two transoid unidentate Ph2pzH ligands. From tBu2pzH, dimeric [Ln2(tBu2pz)4] (Ln = Ce, Er) were isolated and are isomorphous with eight coordinate Ln atoms ligated by two chelating terminal tBu2pz and two μ‐η22 tBu2pz donor groups. They are also isomorphous with previously reported La, Nd, Yb, and Lu complexes.  相似文献   
6.
The homoleptic rare-earth pyrazolate complexes [Sc(tBu2pz)3], [Ln2(tBu2pz)6] (Ln = La, Nd, Sm, Lu), [Eu4(tBu2pz)8] and the mixed oxidation state species [Yb2(tBu2pz)5] (tBu2pz = 3,5-di-tert-butylpyrazolate) have been prepared by a simple reaction between the corresponding rare-earth metal and 3,5-di-tert-butylpyrazole, in the presence of mercury, at elevated temperatures. In addition, [Yb2(tBu2pz)6] was prepared by redox transmetallation/ligand exchange between ytterbium, diphenylmercury(II) and tBu2pzH in toluene, whilst the same reactants in toluene under different conditions or in diethyl ether gave [Yb2(tBu2pz)5]. The complexes of the trivalent lanthanoids display dimeric structures [Ln2(tBu2pz)6] (Ln = La, Nd, Yb, Lu) with chelating eta2-terminal and eta2:eta2-bridging pyrazolate coordination. The considerably smaller Sc3+ ion forms monomeric [Sc(tBu2pz)3] of putative D3h molecular symmetry, with pyrazolate ligands solely eta2-bonded. [Eu4(tBu2pz)8] is a structurally remarkable tetranuclear EuII complex with two types of europium centres in a linear array. The outer two are bonded to one terminal and two bridging pyrazolates, and the inner two are coordinated by four bridging ligands. Unprecedented mu-eta5:eta2 pyrazolate ligation is observed, with each outer Eu2+ sandwiched between two eta5-bonded pyrazolate groups, which are also eta2-linked to an inner Eu2+. The two inner Eu2+ ions are linked together by two equally occupied components of each of two symmetry related, disordered pyrazolate groups with one component eta4:eta2 bridging and one eta3:eta2 bridging. [La2(tBu2pz)6] has also been shown to be a Tishchenko reaction catalyst with several organic substrates.  相似文献   
7.
Summary The rhodium(I) carboxylates,trans-RhO2CR(CO)(PPh3)2 (R = C6F5, C6Cl5,p-HC6F4,m-HC6F4,o-HC6F4,p-McOC6F4, 4,5-H2C6F3, 3,5-H2C6F3, or 2,6-F2C6H3, have been prepared by reaction of RhH(CO)(PPh3)3 with the appropriate polyhalogenobenzoic acids in ethanol and/or by reaction oftrans-RhCl(CO)(PPh3)2 with the appropriate thallous carboxylates in benzene. Decarboxylations with formation of polyhalogenoarylrhodium(I) compounds,trans-RhR(CO)(PPh3)2 (R = C6F5, C6Cl5,p-HC6F4,m-HC6F4,p-MeOC6F4, 4,5-H2C6F3 or 3,5-H2C6F3), have been achieved either by decomposition of the corresponding rhodium(I) carboxylates in pyridine or by reaction oftrans-RhCl(CO)(PPh3)2 and the thallous carboxylates in pyridine, but the derivatives R =o-HC6F4 or 2,6-F2C6H3 could not be obtained by this method. The rate of decarboxylation decreased in the sequence R = C6F5 >p-MeOC6F4 >p-HC6F4 >m-HC6F4 > 4,5-H2C6F3 > 3,5-H2C6F3.Part 1, ref. 10.Preliminary communication, ref. 9.  相似文献   
8.
An X-ray crystallographic study has shown that the complex (C6H5)2TlO2CC6F5(OPPh3) has a dimeric structure with unsymmetrical pentafluorobenzoate bridging (TlO 2.531 and 2.789 Å) but an exact crystallographic centre of symmetry. The pentafluorobenzoate groups are also unsymmetrically chelated to thallium (TlO 2.389 and 2.531 Å.), which overall has irregular six coordination.  相似文献   
9.
The preparations, stabilities and structures of the complexes R2TlX and R2 LTlX (R = C6F5, p-HC6F4, or o-HC6F4; X = Br or Cl; L = Ph3PO, 2,2′-bipyridyl (bpy) or Ph3P) have been examined or (R = C6 F5) reinvestigated. The derivatives R2TlX are monomeric in acetone, from which the complex (p-HC6F4)2 Me2COTIBr has been isolated. In this solvent, the complexes R2LTlX (L = Ph3PO, bpy, or Ph3P) undergo partial dissociation by loss of L. When L = bpy, there is also slight ionization into R2LTl+ and R2TlX?2. The acceptor properties of R2TlX compounds towards uncharged ligands decrease R = C6F5 ? p-HC6F4 > o-HC6F4 > Ph. Dimeric behaviour is observed for R2TIX compounds in benzene, whilst R2LTlX (L = Ph3PO or bpy) derivatives show slight but significant association. In the solid state, R2TlX compounds are considered to be polymeric with five coordinate thallium, and R2LTlX derivatives to be dimeric with five (L = Ph3PO) or six (L = bpy) coordinate thallium by contrast with four coordinate dimeric and four or five coordinate monomeric structures previously proposed for the respective pentafluorophenyl derivatives. Halogen bridging is unsymmetrical for R = C6F5 or p-HC6F4, but may be more symmetrical for R = o-HC6F4 when L = Ph3PO or bpy. Reported structural data for the complexes (C6F5)LTlX (L = Ph3AsO, Ph3P, Ph3As, or 1,10-phenanthroline; X = Br or Cl) and (C6F5)2TlCl?2 are reinterpreted and the proposed structures revised.  相似文献   
10.
Index abstracts     

Other Index

Index abstracts  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号