首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   491736篇
  免费   7570篇
  国内免费   1847篇
化学   269132篇
晶体学   7048篇
力学   20347篇
综合类   40篇
数学   61195篇
物理学   143391篇
  2021年   3293篇
  2020年   3827篇
  2019年   3976篇
  2018年   4638篇
  2017年   4472篇
  2016年   8037篇
  2015年   6129篇
  2014年   8387篇
  2013年   22937篇
  2012年   18130篇
  2011年   21749篇
  2010年   14236篇
  2009年   13789篇
  2008年   19950篇
  2007年   20034篇
  2006年   19048篇
  2005年   17485篇
  2004年   15812篇
  2003年   14009篇
  2002年   13633篇
  2001年   14494篇
  2000年   11238篇
  1999年   8803篇
  1998年   7172篇
  1997年   6872篇
  1996年   6932篇
  1995年   6281篇
  1994年   6089篇
  1993年   5863篇
  1992年   6547篇
  1991年   6274篇
  1990年   6015篇
  1989年   5801篇
  1988年   5964篇
  1987年   5707篇
  1986年   5415篇
  1985年   7724篇
  1984年   7872篇
  1983年   6519篇
  1982年   6974篇
  1981年   6825篇
  1980年   6593篇
  1979年   6782篇
  1978年   6864篇
  1977年   6742篇
  1976年   6739篇
  1975年   6565篇
  1974年   6402篇
  1973年   6700篇
  1972年   4092篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
171.
Kim  F. H.  Moylan  S. P.  Phan  T. Q.  Garboczi  E. J. 《Experimental Mechanics》2020,60(7):987-1004
Experimental Mechanics - Insufficient data are available to fully understand the effects of metal additive manufacturing (AM) defects for widespread adoption of the emerging technology....  相似文献   
172.
A model is developed for the formation and propagation of cracks in a material sample that is heated at its top surface, pyrolyses, and then thermally degrades to form char. In this work the sample is heated uniformly over its entire top surface by a hypothetical flame (a heat source). The pyrolysis mechanism is described by a one-step overall reaction that is dependent nonlinearly on the temperature (Arrhenius form). Stresses develop in response to the thermal degradation of the material by means of a shrinkage strain caused by local mass loss during pyrolysis. When the principal stress exceeds a prescribed threshold value, the material forms a local crack. Cracks are found to generally originate at the surface in response to heating, but occasionally they form in the bulk, away from ever-changing material boundaries. The resulting cracks evolve and form patterns whose characteristics are described. Quantities examined in detail are: the crack spacing in the pyrolysis zone; the crack length evolution; the formation and nature of crack loops which are defined as individual cracks that have joined to form loops that are disconnected from the remaining material; the formation of enhanced pyrolysis area; and the impact of all of the former quantities on mass flux. It is determined that the mass flux from the sample can be greatly enhanced over its nominal (non-cracking) counterpart. The mass efflux profile qualitatively resembles those observed in Cone Calorimeter tests.  相似文献   
173.
174.
175.
176.
177.
178.
179.
180.
Following a thermal reduction method, platinum nanoparticles were synthesized and stabilized by polyvinylpyrrolidone. The colloidal platinum nanoparticles were stable for more than 3 months. The micrograph analysis unveiled that the colloidal platinum nanoparticles were well dispersed with an average size of 2.53 nm. The sol–gel‐based inverse micelle strategy was applied to synthesize mesoporous iron oxide material. The colloidal platinum nanoparticles were deposited on mesoporous iron oxide through the capillary inclusion method. The small‐angle X‐ray scattering analysis indicated that the dimension of platinum nanoparticles deposited on mesoporous iron oxide (Pt‐Fe2O3) was 2.64 nm. X‐ray photoelectron spectroscopy (XPS) data showed that the binding energy on Pt‐Fe2O3 surface decreased owing to mesoporous support–nanoparticle interaction. Both colloidal and deposited platinum nanocatalysts improved the degradation of methyl orange under reduction conditions. The activation energy on the deposited platinum nanocatalyst interface (2.66 kJ mol?1) was significantly lowered compared with the one on the colloidal platinum nanocatalyst interface (40.63 ± 0.53 kJ mol?1).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号