首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73770篇
  免费   3545篇
  国内免费   1773篇
化学   56032篇
晶体学   1195篇
力学   1812篇
综合类   157篇
数学   4974篇
物理学   14918篇
  2024年   185篇
  2023年   366篇
  2022年   616篇
  2021年   943篇
  2020年   2264篇
  2019年   3803篇
  2018年   1578篇
  2017年   1128篇
  2016年   4399篇
  2015年   4573篇
  2014年   4626篇
  2013年   5801篇
  2012年   4542篇
  2011年   3954篇
  2010年   4069篇
  2009年   3946篇
  2008年   3685篇
  2007年   3130篇
  2006年   2619篇
  2005年   2770篇
  2004年   2534篇
  2003年   2317篇
  2002年   3064篇
  2001年   2242篇
  2000年   2093篇
  1999年   971篇
  1998年   489篇
  1997年   456篇
  1996年   442篇
  1995年   461篇
  1994年   401篇
  1993年   336篇
  1992年   273篇
  1991年   313篇
  1990年   279篇
  1989年   240篇
  1988年   201篇
  1987年   176篇
  1986年   164篇
  1985年   257篇
  1984年   253篇
  1983年   181篇
  1982年   201篇
  1981年   172篇
  1980年   170篇
  1979年   147篇
  1978年   129篇
  1977年   181篇
  1976年   155篇
  1975年   128篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
A bent‐core mesogen consisting of a 4‐cyanoresorcinol unit as the central core and laterally fluorinated azobenzene wings forms four different smectic LC phase structures in the sequence SmA–SmCs–SmCsPAR–M, all involving polar SmCsPS domains with growing coherence length of tilt and polar order on decreasing temperature. The SmA phase is a cluster‐type de Vries phase with randomized tilt and polar direction; in the paraelectric SmCs phase the tilt becomes uniform, although polar order is still short‐range. Increasing polar correlation leads to a new tilted and randomized polar smectic phase with antipolar correlation between the domains (SmCsPAR) which then transforms into a viscous polar mesophase M. As another interesting feature, spontaneous symmetry breaking by formation of a conglomerate of chiral domains is observed in the non‐polar paraelectric SmCs phase.  相似文献   
992.
Monitoring the interaction of biomolecules is important, and the use of energy transfer is a principal technique in elucidating nanoscale interactions. Lanthanide compounds are promising luminescent probes for biological samples as their emission is longer‐lived than any native autofluorescence. Polyoxometalates (POMs) are interesting structural motifs to incorporate lanthanides, offering low toxicity and a size pertinent for biological applications. Here, we employ iso‐structured POMs containing either terbium or europium and assess their interaction with serum albumin by sensitisation of a fluorescent tag on the protein via LRET (luminescence resonance energy transfer) by exciting the lanthanide. Time‐resolved measurements showed energy transfer with an efficiency of over 90 % for the POM–protein systems. The Tb–POM results were relatively straightforward, while those with the iso‐structured Eu–POM were complicated by the effect of protein shielding from the aqueous environment.  相似文献   
993.
The IR spectra of 5‐bromo‐2,4‐pentadiynenitrile (Br?C≡C?C≡C?CN) and 2,4‐hexadiynenitrile (CH3?C≡C?C≡C?CN), a compound of interstellar interest, have been recorded within the 4000–500 cm?1 spectral region and calculated by means of high‐level ab initio and density functional calculations. Although the calculated structures of both compounds are rather similar, there are very subtle differences, mainly in the strength of the C≡C bond not directly bound to the substituent. These subtle bonding differences are reflected in small, but not negligible, differences in the electron density at the corresponding bond critical points, and, more importantly, are reflected in the IR spectra. Indeed, the IR spectrum for the bromine derivative presents two well‐differentiated strong bands around 2250 cm?1, whereas for the methyl derivative both absorptions coalesce in a single band. These bands correspond in both cases to the coupling between C≡C and C≡N stretching displacements. A third, very weak, band also associated with C≡C and C≡N coupled stretches is observed for the bromine derivative, but not for the methyl one, owing to its extremely low intensity.  相似文献   
994.
Using first‐principles methodologies, the equilibrium structures and the relative stability of CO2@[Znq+Im] (where q=0, 1, 2; Im=imidazole) complexes are studied to understand the nature of the interactions between the CO2 and Znq+–imidazole entities. These complexes are considered as prototype models mimicking the interactions of CO2 with these subunits of zeolitic imidazolate frameworks or Zn enzymes. These computations are performed using both ab initio calculations and density functional theory. Dispersion effects accounting for long‐range interactions are considered. Solvent (water) effects were also considered using a polarizable continuum model approach. Natural bond orbital, charge, frontier orbital and vibrational analyses clearly reveal the occurrence of charge transfer through covalent and noncovalent interactions. Moreover, it is found that CO2 can adsorb through more favorable π‐type stacking as well as σ‐type hydrogen‐bonding interactions. The inter‐monomer interaction potentials show a significant anisotropy that might induce CO2 orientation and site‐selectivity effects in porous materials and in active sites of Zn enzymes. Hence, this study provides valuable information about how CO2 adsorption takes place at the microscopic level within zeolitic imidazolate frameworks and biomolecules. These findings might help in understanding the role of such complexes in chemistry, biology and material science for further development of new materials and industrial applications.  相似文献   
995.
The hydrogen bonding of noncoordinated water molecules to each other and to water molecules that are coordinated to metal‐ion complexes has been investigated by means of a search of the Cambridge Structural Database (CSD) and through quantum chemical calculations. Tetrahedral and octahedral complexes that were both charged and neutral were studied. A general conclusion is that hydrogen bonds between noncoordinated water and coordinated water are much stronger than those between noncoordinated waters, whereas hydrogen bonds of water molecule in tetrahedral complexes are stronger than in octahedral complexes. We examined the possibility of correlating the computed interaction energies with the most positive electrostatic potentials on the interacting hydrogen atoms prior to interaction and obtained very good correlation. This study illustrates the fact that electrostatic potentials computed for ground‐state molecules, prior to interaction, can provide considerable insight into the interactions.  相似文献   
996.
Mesoporous TiO2 nanocrystalline film was formed on fluorine‐doped tin oxide electrode (TiO2/FTO) and gold nanoparticles (NPs) of different sizes were loaded onto the surface with the loading amount kept constant (Au/TiO2/FTO). Visible‐light irradiation (λ>430 nm) of the Au/TiO2/FTO photoanode in a photoelectrochemical cell with the structure of photoanode|0.1 m NaClO4 aqueous solution|Ag/AgCl (reference electrode)|glassy carbon (cathode) leads to the oxidation of water to oxygen (O2). We show that the visible‐light activity of the Au/TiO2/FTO anode increases with a decrease in Au particle size (d) at 2.9≤d≤11.9 nm due to the enhancement of the charge separation and increasing photoelectrocatalytic activity.  相似文献   
997.
998.
999.
1000.
Aligned and flexible electrospun carbon nanomaterials are used to synthesize carbon/perovskite nanocomposites. The free‐electron diffusion length in the CH3NH3PbI3 phase of the CH3NH3PbI3/carbon nanocomposite is almost twice that of bare CH3NH3PbI3, and nearly 95 % of the photogenerated free holes can be injected from the CH3NH3PbI3 phase into the carbon nanomaterial. The exciton binding energy of the composite is estimated to be 23 meV by utilizing temperature‐dependent optical absorption spectroscopy. The calculated free carriers increase with increasing total photoexcitation density, and this broadens the potential of this material for a broad range of optoelectronics applications. A metal‐electrode‐free perovskite solar cell (power conversion efficiency: 13.0 %) is fabricated with this perovskite/carbon composite, which shows great potential for the fabrication of efficient, large‐scale, low‐cost, and metal‐electrode‐free perovskite solar cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号