首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1049篇
  免费   42篇
  国内免费   1篇
化学   717篇
晶体学   2篇
力学   52篇
数学   152篇
物理学   169篇
  2024年   4篇
  2023年   12篇
  2022年   45篇
  2021年   50篇
  2020年   39篇
  2019年   27篇
  2018年   28篇
  2017年   20篇
  2016年   70篇
  2015年   40篇
  2014年   42篇
  2013年   69篇
  2012年   82篇
  2011年   112篇
  2010年   53篇
  2009年   34篇
  2008年   50篇
  2007年   57篇
  2006年   53篇
  2005年   55篇
  2004年   30篇
  2003年   33篇
  2002年   23篇
  2001年   5篇
  2000年   11篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   6篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1991年   3篇
  1990年   2篇
  1989年   6篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1970年   1篇
  1961年   1篇
  1948年   1篇
  1938年   1篇
  1937年   1篇
  1918年   1篇
  1916年   1篇
排序方式: 共有1092条查询结果,搜索用时 15 毫秒
171.
The lipidome of a brown seaweed commonly known as wakame (Undaria pinnatifida), which is grown and consumed around the world, including Western countries, as a healthy nutraceutical food or supplement, was here extensively examined. The study was focused on the characterization of phospholipids (PL) and glycolipids (GL) by liquid chromatography (LC), either hydrophilic interaction LC (HILIC) or reversed-phase LC (RPLC), coupled to electrospray ionization (ESI) and mass spectrometry (MS), operated both in high and in low-resolution mode. Through the acquisition of single (MS) and tandem (MS/MS) mass spectra more than 200 PL and GL of U. pinnatifida extracts were characterized in terms of lipid class, fatty acyl (FA) chain composition (length and number of unsaturations), and regiochemistry, namely 16 SQDG, 6 SQMG, 12 DGDG, 5 DGMG, 29 PG, 8 LPG, 19 PI, 14 PA, 19 PE, 8 PE, 38 PC, and 27 LPC. The FA (C16:0) was the most abundant saturated acyl chain, whereas the monounsaturated C18:1 and the polyunsaturated C18:2 and C20:4 chains were the prevailing ones. Odd-numbered acyl chains, iJ., C15:0, C17:0, C19:0, and C19:1, were also recognized. While SQDG exhibited the longest and most unsaturated acyl chains, C18:1, C18:2, and C18:3, in the sn-1 position of glycerol, they were preferentially located in the sn-2 position in the case of PL. The developed analytical approach might pave the way to extend lipidomic investigations also for other edible marine algae, thus emphasizing their potential role as a source of bioactive lipids.  相似文献   
172.
In the Pt-catalyzed hydrogenation of 1,1,1-trifluoro-2,4-diketones, addition of trace amounts of cinchonidine, O-methyl-cinchonidine, or (R,R)-pantoyl-naphthylethylamine induces up to 93% ee and enhances the chemoselectivity up to 100% in the hydrogenation of the activated carbonyl group to an OH function. A combined catalytic, NMR and FTIR spectroscopic, and theoretical study revealed that the two phenomena are coupled, offering the unique possibility for understanding the substrate-modifier-metal interactions. The high chemo- and enantioselectivities are attributed to the formation of an ion pair involving the protonated amine function of the chiral modifier and the enolate form of the substrate. DFT calculations including the simulation of the interaction of a protonated amine with the enolate adsorbed on a Pt 31 cluster revealed that only the C-O bond next to the CF3 group of the substrate is in direct contact with Pt and can be hydrogenated. The present study illustrates the fundamental role played by the metal surface and indicates that also the enol form can be the reactive species in the hydrogenation of the activated ketone on chirally modified Pt.  相似文献   
173.
Initiation kinetics in free radical polymerization is investigated using density functional theory. Thermodynamic and kinetic parameters of the initiation reactions are predicted, and the role of the initiators in the polymerization process is evaluated. Methyl acrylate, methyl methacrylate, acrylonitrile, and styrene homo‐polymerizations with different initiators are studied. Reaction enthalpy and activation energy for each reaction between monomer and the radical fragments arising from the initiators have been determined. The initiation kinetic constants for all of these initiation reactions are evaluated and compared with both computational and experimental propagation kinetic constants of each monomer.

  相似文献   

174.
In this tutorial paper we present a comprehensive review of the escape dynamics from quantum metastable states in dissipative systems and related noise-induced effects. We analyze the role of dissipation and driving in the escape process from quantum metastable states with and without an external driving force, starting from a nonequilibrium initial condition. We use the Caldeira–Leggett model and a non-perturbative theoretical technique within the Feynman–Vernon influence functional approach in strong dissipation regime. In the absence of driving, we find that the escape time from the metastable region has a nonmonotonic behavior versus the system-bath coupling and the temperature, producing a stabilizing effect in the quantum metastable system. In the presence of an external driving, the escape time from the metastable region has a nonmonotonic behavior as a function of the frequency of the driving, the thermal-bath coupling and the temperature. The quantum noise enhanced stability phenomenon is observed in both systems investigated. Finally, we analyze the resonantly activated escape from a quantum metastable state in the spin-boson model. We find quantum stochastic resonant activation, that is the presence of a minimum in the escape time as a function of the driving frequency. Background and introductory material has been added in the first three sections of the paper to make this tutorial review reasonably self-contained and readable for graduate students and non-specialists from related areas.  相似文献   
175.
Particle Image Velocimetry (PIV) measurements have been analyzed in order to characterize the dynamics of coherent structures (eddies and streaks) within the suction side boundary layer of a low pressure turbine cascade perturbed by impinging wakes. To this end, the instantaneous flow fields at low Reynolds number and elevated free-stream turbulence intensity level (simulating the real condition of the blade row within the engine) were investigated in two orthogonal planes (a blade-to-blade and a wall-parallel plane). Proper Orthogonal Decomposition (POD) has been employed to filter the instantaneous flow maps allowing a better visualization of the structures involved in the transition process of the boundary layer. For the unsteady case properly selected POD modes have been also used to sort the instantaneous PIV images in the wake passage period. This procedure allows computing phase-averaged data and visualizing structures size and intensity in the different parts of the boundary layer during the different wake passage phases. The contributions to the whole shear stress due to the largest spanwise oriented scales at the leading and trailing boundaries of the wake-jet structures and those associated with streaky structures observed in the bulk of the wake are discussed. Instantaneous images in the wall-parallel plane are filtered with POD and they allow us to further highlight the occurrence of low and high speed traveling streaks (Klebanoff mode). The periodic advection along the suction side of the high turbulent content regions carried by the wakes anticipates both formation and sinuous instability of the streaks inside the boundary layer as compared with the steady case. The dynamics driving the breakdown of the streaks and the consequent formation of nuclei with high wall-normal vorticity have been found to be almost the same in the steady and the unsteady cases. Auto-correlation of the instantaneous images are also presented in order to highlight analogies and differences in the size and spacing of streaks in the two cases. These results are also compared with the available literature concerning simplified geometries (i.e flat plate) operating under steady inflow.  相似文献   
176.
We consider stationary stochastic processes arising from dynamical systems by evaluating a given observable along the orbits of the system. We focus on the extremal behaviour of the process, which is related to the entrance in certain regions of the phase space, which correspond to neighbourhoods of the maximal set \(\mathcal M\), i.e.,the set of points where the observable is maximised. The main novelty here is the fact that we consider that the set \(\mathcal M\) may have a countable number of points, which are associated by belonging to the orbit of a certain point, and may have accumulation points. In order to prove the existence of distributional limits and study the intensity of clustering, given by the Extremal Index, we generalise the conditions previously introduced in Freitas (Adv Math 231(5): 2626–2665, 2012, Stoch Process Appl 125(4): 1653–1687, 2015).  相似文献   
177.
We study the structure of stationary non-equilibrium states for interacting particle systems from a microscopic viewpoint. In particular we discuss two different discrete geometric constructions. We apply both of them to determine non reversible transition rates corresponding to a fixed invariant measure. The first one uses the equivalence of this problem with the construction of divergence free flows on the transition graph. Since divergence free flows are characterized by cyclic decompositions we can generate families of models from elementary cycles on the configuration space. The second construction is a functional discrete Hodge decomposition for translational covariant discrete vector fields. According to this, for example, the instantaneous current of any interacting particle system on a finite torus can be canonically decomposed in a gradient part, a circulation term and an harmonic component. All the three components are associated with functions on the configuration space. This decomposition is unique and constructive. The stationary condition can be interpreted as an orthogonality condition with respect to an harmonic discrete vector field and we use this decomposition to construct models having a fixed invariant measure.  相似文献   
178.
Photochemical degradation plays an important role in the attenuation of many recalcitrant pollutants in surface freshwaters. Photoinduced transformation kinetics are strongly affected by environmental conditions, where sunlight irradiance plays the main role, followed by water depth and dissolved organic carbon (DOC). Apart from poorly predictable weather-related issues, fair-weather irradiance has a seasonal trend that results in the fastest photodegradation in June and the slowest in December (at least in temperate areas of the northern hemisphere). Pollutants that have first-order photochemical lifetimes longer than a week take more than one month to achieve 95% photodegradation. Consequently, they may experience quite different irradiance conditions as their photodegradation goes on. The relevant time trend can be approximated as a series of first-order kinetic tracts, each lasting for one month. The trend considerably departs from an overall exponential decay, if degradation takes long enough to encompass seasonally varying irradiance conditions. For instance, sunlight irradiance is higher in July than in April, but increasing irradiance after April and decreasing irradiance after July ensure that pollutants emitted in either month undergo degradation with very similar time trends in the first 3–4 months after emission. If photodegradation takes longer, pollutants emitted in July experience a considerable slowdown in photoreaction kinetics as winter is approached. Therefore, if pollutants are photostable enough that their photochemical time trend evolves over different seasons, degradation acquires some peculiar features than cannot be easily predicted from a mere analysis of lifetimes in the framework of simple first-order kinetics. Such features are here highlighted with a modelling approach, taking the case of carbamazepine as the main example. This contaminant is almost totally biorecalcitrant, and it is also quite resistant to photodegradation.  相似文献   
179.
We consider a flexible bio-inspired slender mechanism, modeled as a Timoshenko beam. It is coupled to the environment by a continuous distribution of compliant elements. We derive a reduced order model by projecting the governing partial differential equations along the linear modal basis of the Timoshenko beam. The coupling with the substrate allows us to formulate the problem in a control framework, and eventually to treat the system as a sensor to reconstruct the profile of the substrate through the deformation of the body. The coupling is modeled in the framework of two parameters elastic foundations. The convergence of the reduced order model with increasing number of basis functions is addressed in a suitable H1 error norm. A closed loop force control is simulated for shape morphing when the system is coupled with a smooth substrate.  相似文献   
180.
In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the chosen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan–Yorke dimension of the attractor. Preliminary numerical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号