首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   554680篇
  免费   4880篇
  国内免费   1511篇
化学   286237篇
晶体学   7807篇
力学   26665篇
综合类   17篇
数学   72813篇
物理学   167532篇
  2021年   5357篇
  2020年   5872篇
  2019年   6622篇
  2018年   8722篇
  2017年   8869篇
  2016年   12308篇
  2015年   6784篇
  2014年   11086篇
  2013年   24906篇
  2012年   19753篇
  2011年   23610篇
  2010年   17346篇
  2009年   17099篇
  2008年   22224篇
  2007年   22082篇
  2006年   20147篇
  2005年   18026篇
  2004年   16680篇
  2003年   14985篇
  2002年   14850篇
  2001年   15053篇
  2000年   11655篇
  1999年   9038篇
  1998年   7873篇
  1997年   7752篇
  1996年   7299篇
  1995年   6523篇
  1994年   6513篇
  1993年   6242篇
  1992年   6592篇
  1991年   7058篇
  1990年   6746篇
  1989年   6654篇
  1988年   6513篇
  1987年   6300篇
  1986年   6028篇
  1985年   7691篇
  1984年   8053篇
  1983年   6732篇
  1982年   7080篇
  1981年   6585篇
  1980年   6252篇
  1979年   6737篇
  1978年   6951篇
  1977年   6815篇
  1976年   6769篇
  1975年   6478篇
  1974年   6305篇
  1973年   6603篇
  1972年   4770篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
The microstructure and fracture behavior of epoxy mixtures containing two monomers of different molecular weights were studied. The variation of the fracture toughness by the addition of other modifiers was also investigated. Several amounts of high‐molecular‐weight diglycidyl ether of bisphenol A (DGEBA) oligomer were added to a nearly pure DGEBA monomer. The mixtures were cured with an aromatic amine, showing phase separation after curing. The curing behavior of the epoxy mixtures was investigated with thermal measurements. A significant enhancement of the fracture toughness was accompanied by slight increases in both the rigidity and strength of the mixtures that corresponded to the content of the high‐molecular‐weight epoxy resin. Dynamic mechanical and atomic force microscopy measurements indicated that the generated two‐phase morphology was a function of the content of the epoxy resin added. The influence of the addition of an oligomer or a thermoplastic on the morphologies and mechanical properties of both epoxy‐containing mixtures was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3920–3933, 2004  相似文献   
52.
For as‐extruded amorphous and biaxially orientated polyester films based on poly(ethylene terephthalate), poly(ethylene naphthalate), and copolymers containing poly(ethylene terephthalate) and poly(ethylene naphthalate) moieties, permeability, diffusion, and solubility coefficients are interpreted in terms of chain mobility. The influence of polymer morphology is determined by comparison of the data for as‐extruded amorphous sheets and materials produced with different biaxial draw ratios. The crystallinities of the samples were assessed using differential scanning calorimetry and density measurements. Changes in mobility at a molecular level were investigated using dielectric spectroscopy and dynamic mechanical thermal analysis. The study, in conjunction with our earlier work, leads to the conclusion that the key to understanding differences in gas transport is the difference in local chain motions rather than in free volume. This was illustrated by the permeability results for He, Ar, N2, and O2 in the range of polyesters. However, the permeability of CO2 was found to require alternative explanations because of polymer–penetrant interactions. For biaxially oriented samples, the differences in diffusivity are not only due to differences in local chain motions, but also additional constraints resulting from the increased crystallinity and chain rigidity—which also act to hinder segmental mobility. The effectiveness of the reduction in permeability in the biaxially oriented films is consequently determined by the ability of the polymer chains to effectively align and form crystalline structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2916–2929, 2004  相似文献   
53.
Large melting point depressions for organic nanocrystals, in comparison with those of the bulk, were observed in an associative polymer: telechelic, pyrene‐labeled poly(dimethylsiloxane) (Py‐PDMS‐Py). Nanocrystals formed within nanoaggregates of pyrenyl units that were immiscible in poly(dimethylsiloxane). For 5 and 7 kg/mol Py‐PDMS‐Py, physical gels resulted, with melting points exceeding 40 °C and with small‐angle X‐ray scattering peaks indicating that the crystals were nanoconfined, were 2–3 nm long, and contained roughly 18–30 pyrenyl dye end units. In contrast, 30 kg/mol Py‐PDMS‐PY was not a gel and exhibited no scattering peak at room temperature; however, after 12 h of annealing at ?5 °C, multiple melting peaks were present at 5–30 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3470–3475, 2004  相似文献   
54.
One of the essential differences in the design of bubble pressure tensiometers consists in the geometry of the measuring capillaries. To reach extremely short adsorption times of milliseconds and below, the so-called deadtime of the capillaries must be of the order of some 10 ms. In particular, for concentrated surfactant solutions, such as micellar solutions, short deadtimes are needed to minimize the initial surfactant load of the generated bubbles. A theoretical model is derived and confirmed by experiments performed for a wide range of experimental conditions, mainly in respect to variations in deadtime and bubble volume.  相似文献   
55.
Fingering instabilities are observed at the contact line of drops of surfactant solutions spreading spontaneously on solid surfaces coated by a film of solvent. The occurrences of instabilities, and the characteristics of the instability pattern, are controlled by the surfactant concentration and the thickness of the film adsorbed or deposited on the substrate. This work provides experimental data as a basis for forthcoming theoretical analyses.  相似文献   
56.
This article presents a new methodology for the quantitative determination of the progress of the curing reaction of a thermosetting resin, using the results of electrical impedance spectroscopy. The method is an extension of the use of the imaginary impedance maximum as a reaction progress indicator and is based on the demonstration of a close correlation between the reaction rate, as measured by conventional differential scanning calorimetry, and the rate of change of the value of the imaginary impedance spectrum maximum. Tests on a commercial aerospace epoxy resin under both isothermal and dynamic heating conditions with calorimetry and impedance spectroscopy have demonstrated the validity of the method and set the accuracy limits involved. This technique can be used as a real-time online control tool for thermoset composite manufacturing. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 146–154, 2004  相似文献   
57.
The surface compositions and morphologies of melt‐quenched blends of isotactic polypropylene (iPP) with aspecific poly(ethylene‐co‐propylene) rubber (aEPR) were characterized by atomic force microscopy, optical microscopy, and X‐ray photoelectron spectroscopy. The surface morphologies and compositions formed in the melt are frozen‐in by crystallization of the iPP component and, depending on the processing conditions, are enriched in iPP or aEPR or contain a phase‐separated mix of iPP and aEPR. Enrichment of iPP is observed for blends melted in open air, in agreement with earlier work showing the high surface activity of atactic polypropylene at open interfaces. Surface segregation of iPP is suppressed at confined interfaces. Blends melt‐pressed between hydrophilic and hydrophobic substrates have phase‐separated iPP and aEPR domains present at the surface, which grow in size as the melt time increases. Surface enrichment of aEPR is observed after exposing melt‐pressed blends to n‐hexane vapor, which preferentially solvates aEPR and draws it to the surface. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 421–432, 2004  相似文献   
58.
The Simha and Somcynsky (S–S) statistical thermodynamics theory was used to compute the solubility parameters as a function of temperature and pressure [δ = δ(T, P)], for a series of polymer melts. The characteristic scaling parameters required for this task, P*, T*, and V*, were extracted from the pressure–temperature–volume (PVT) data. To determine the potential polymer–polymer miscibility, the dependence of δ versus T (at ambient pressure) was computed for 17 polymers. Close proximity of the δ versus T curves for four miscible polymer pairs: PPE/PS, PS/PVME, and PC/PMMA signaled the usefulness of this approach. It is noteworthy, that the tabulated solubility parameters (derived from the solution data under ambient conditions) propounded the immiscibility of the PVC/PVAc pair. The computed values of δ also suggested miscibility for polymer pairs of unknown miscibility, namely PPE/PVC, PPE/PVAc, and PET/PSF. In recognizing the limitations of the solubility parameter approach (the omission of several thermodynamic contributions), these preliminary results are auspicious because they indicate a new route for estimating the miscibility of any polymeric material at a given temperature and pressure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2909–2915, 2004  相似文献   
59.
For a graph G and a positive integer m, G(m) is the graph obtained from G by replacing every vertex by an independent set of size m and every edge by m2 edges joining all possible new pairs of ends. If G triangulates a surface, then it is easy to see from Euler's formula that G(m) can, in principle, triangulate a surface. For m prime and at least 7, it has previously been shown that in fact G(m) does triangulate a surface, and in fact does so as a “covering with folds” of the original triangulation. For m = 5, this would be a consequence of Tutte's 5‐Flow Conjecture. In this work, we investigate the case m = 2 and describe simple classes of triangulations G for which G(2) does have a triangulation that covers G “with folds,” as well as providing a simple infinite class of triangulations G of the sphere for which G(2) does not triangulate any surface. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 79–92, 2003  相似文献   
60.
Crystals of Saccharomyces cerevisiae inorganic pyrophosphatase suitable for X-ray diffraction study were grown by cocrystallization of the enzyme with cobalt chloride and imidodiphosphate. Saccharomyces cerevisiae is a metal-dependent enzyme which catalyzes hydrolysis of inorganic pyrophosphate to orthophosphate. The three-dimensional structure of this enzyme was solved by the molecular-replacement method and refined at 1.8 Å resolution to an R factor of 19.5%. Cobalt and phosphate ions were revealed in the active centers of both identical subunits (A and B) of the pyrophosphatase molecule. In subunit B, a water molecule was found between two cobalt ions. It is believed that this water molecule acts as an attacking nucleophile in the enzymatic cleavage of the pyrophosphate bond. It was demonstrated that cobalt ions and a phosphate group occupy only part of the potential binding sites (two chemically identical and crystallographically independent subunits have different binding sites). The arrangement of ligands and the structure of the nucleophile-binding site are discussed in relation to the mechanism of action of the enzyme and the nature of the metal activator.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号