首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36629篇
  免费   18156篇
  国内免费   58篇
化学   52195篇
晶体学   19篇
力学   1083篇
数学   1111篇
物理学   435篇
  2024年   171篇
  2023年   4235篇
  2022年   1389篇
  2021年   2396篇
  2020年   4666篇
  2019年   2216篇
  2018年   2371篇
  2017年   594篇
  2016年   5529篇
  2015年   5489篇
  2014年   4911篇
  2013年   5035篇
  2012年   3016篇
  2011年   947篇
  2010年   3304篇
  2009年   3239篇
  2008年   966篇
  2007年   651篇
  2006年   88篇
  2005年   43篇
  1997年   43篇
  1996年   46篇
  1995年   109篇
  1994年   66篇
  1993年   186篇
  1992年   66篇
  1991年   56篇
  1989年   45篇
  1988年   75篇
  1987年   61篇
  1986年   43篇
  1985年   46篇
  1984年   57篇
  1983年   64篇
  1982年   72篇
  1981年   84篇
  1980年   103篇
  1979年   94篇
  1978年   95篇
  1977年   162篇
  1976年   182篇
  1975年   186篇
  1974年   194篇
  1973年   110篇
  1972年   153篇
  1971年   122篇
  1970年   207篇
  1969年   125篇
  1968年   133篇
  1966年   38篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The rapid development of additive manufacturing techniques, also known as three-dimensional (3D) printing, is driving innovations in polymer chemistry, materials science, and engineering. Among current 3D printing techniques, direct ink writing (DIW) employs viscoelastic materials as inks, which are capable of constructing sophisticated 3D architectures at ambient conditions. In this perspective, polymer designs that meet the rheological requirements for direct ink writing are outlined and successful examples are summarized, which include the development of polymer micelles, co-assembled hydrogels, supramolecularly cross-linked systems, polymer liquids with microcrystalline domains, and hydrogels with dynamic covalent cross-links. Furthermore, advanced polymer designs that reinforce the mechanical properties of these 3D printing materials, as well as the integration of functional moieties to these materials are discussed to inspire new polymer designs for direct ink writing and broadly 3D printing.  相似文献   
992.
>The combination of CoCl2 with bidentate phosphines is known to catalyze challenging cross-coupling and Heck-type reactions, but the mechanisms of these valuable transformations have not been established. Here, we use electrospray-ionization mass spectrometry to intercept the species formed in these reactions. Our results indicate that a sequence of transmetalation, reductive elimination, and redox disproportionation convert the cobalt(II) precatalyst into low-valent cobalt complexes. These species readily transfer single electrons to alkyl bromides, which thereupon dissociate into alkyl radicals and Br. In cross-coupling reactions, the alkyl radicals add to the cobalt catalyst to form observable heteroleptic complexes, which release the coupling products through reductive eliminations. In the Heck-type reactions, the low abundance of newly formed ionic species renders the analysis more difficult. Nonetheless, our results also point to the occurrence of single-electron transfer processes and the involvement of radicals in these transformations.  相似文献   
993.
The visible-light-induced arylation of tertiary phosphines with aryl(mesityl)iodonium triflates to produce the quaternary phosphonium salts occurs under mild, metal, and catalyst-free conditions. Photo-excited EDA complexes between diaryliodonium salts and phosphines supposedly enable this transformation, which is difficult to achieve through the traditional ground-state reactions. Demonstrating high functional group tolerance, broad scope, and complete selectivity of the aryl group transfer, the method is particularly compatible with sterically congested phosphines, which are challenging under metal-based catalytic methods.  相似文献   
994.
Metallophilic interactions between closed-shell metal ions are becoming a popular tool for a variety of applications related to high-end materials. Heavier d8 transition-metal ions are also considered to have a closed shell and can be involved in such interactions. There is no systematic investigation so far to estimate the structure and energy characteristics of metallophilic interactions in AgII/AgII (d9/d9), AgIII/AgIII (d8/d8), and mixed-valent AgII/AgIII (d9/d8) complexes, which have been demonstrated in the present study. Both interporphyrinic and intermetallic interactions were investigated on stepwise oxidation by using a rigid ethene-bridged cis silver(II) porphyrin dimer and the results compared with those for highly flexible ethane-bridged analogues. By controlling the nature of chemical oxidants and their stoichiometry, both 1e and 2e oxidations were done stepwise to generate AgII/AgIII mixed-valent and AgIII/AgIII porphyrin dimers, respectively. Unlike all other ethene-bridged metalloporphyrin dimers reported earlier, in which 2e oxidation stabilizes only the trans form, such an oxidation of silver(II) porphyrin dimer stabilizes only the cis form because of the metallophilic interaction. Besides silver(II) ⋅⋅⋅ silver(II) interactions in cis silver(II) porphyrin dimer, stepwise oxidations also enabled us to achieve various hitherto-unknown silver(II) ⋅⋅⋅ silver(III) and silver(III) ⋅⋅⋅ silver(III) interactions, which thereby allow significant modulation of their structure and properties. The strength of Ag ⋅⋅⋅ Ag interaction follows the order AgII/AgII (d9/d9)<AgII/AgIII (d9/d8)<AgIII/AgIII (d8/d8). Single-crystal XRD, X-ray photoelectron spectroscopy (XPS), 1H NMR and EPR spectroscopy, and variable-temperature magnetic investigations revealed various oxidation states of silver and metallophilic interactions, which are also well supported by computational analysis.  相似文献   
995.
A viologen derivative carrying a benzimidazole group ( V-P-I 2+; viologen–phenylene–imidazole V-P-I ) can be dimerized in water using cucurbit[8]uril (CB[8]) in the form of a 2:2 complex resulting in a negative shift of the guest pKa, by more than 1 pH unit, contrasting with the positive pKa shift usually observed for CB-based complexes. Whereas 2:2 complex protonation is unclear by NMR, silver cations have been used for probing the accessibility of the imidazole groups of the 2:2 complexes. The protonation capacity of the buried imidazole groups is reduced, suggesting that CB[8] could trigger proton release upon 2:2 complex formation. The addition of CB[8] to a solution containing V-P- I 3+ indeed released protons as monitored by pH-metry and visualized by a coloured indicator. This property was used to induce a host/guest swapping, accompanied by a proton transfer, between V-P-I 3+ ⋅ CB[7] and a CB[8] complex of 1-methyl-4-(4-pyridyl)pyridinium. The origin of this negative pKa shift is proposed to stand in an ideal charge state, and in the position of the two pH-responsive fragments inside the two CB[8] which, alike residues engulfed in proteins, favour the deprotonated form of the guest molecules. Such proton release triggered by a recognition event is reminiscent of several biological processes and may open new avenues toward bioinspired enzyme mimics catalyzing proton transfer or chemical reactions.  相似文献   
996.
Protein nanogels have found a wide variety of applications, ranging from biocatalysis to drug/protein delivery. However, in practical applications, proteins in nanogels may suffer from enzymic hydrolysis and denaturation. Inspired by the structure and functionalities of the fowl eggshells, biomimetic mineralization of protein nanogels was studied in this research. Protein nanogels with embedded porcine pancreas lipase (PPL) in the cross-linked nanostructures were synthesized through the thiol–disulfide reaction between thiol-functionalized PPL and poly(N-isopropylacrylamide) with pendant pyridyl disulfide groups. The nanogels were further reacted with reduced bovine serum albumin (BSA) and BSA molecules were coated on the nanogels. Mineralization of BSA leads to the synthesis of biomineralized shells on the nanogels. With the growth of CaCO3 on the shells, the nanogels aggregate into suprastructures. Thermogravimetric analysis, XRD, dynamic light scattering, and TEM were employed to study the mechanism of the biomineralization process and analyze the structures of the mineralized nanogels. The biomineralized shells can effectively protect the PPL molecules from hydrolysis by trypsin; meanwhile, the nanosized channels on the mineralized shells allow the transport of small-molecule substrates across the shells. Bioactivity measurements indicate that PPL in the nanogels maintains more than 80 % bioactivity after biomineralization.  相似文献   
997.
Pyran-2-ones 3 undergo a novel Pd0-catalyzed 1,3-rearrangement to afford isomers 6 . The reaction proceeds via an η2-Pd complex, the pyramidalization of which (confirmed by quantum chemistry calculations) offers a favorable antiperiplanar alignment of the Pd−C and allylic C−O bonds ( C ), thus allowing the formation of an η3-Pd intermediate. Subsequent rotation and rate-limiting recombination with the carboxylate arm then gives isomeric pyran-2-ones 6 . The calculated free energies reproduce the observed kinetics semi-quantitatively.  相似文献   
998.
A dynamic supramolecular approach is developed to promote the π-dimerization of viologen radicals at room temperature and in standard concentration ranges. The approach involves cis- or trans-protected palladium centers serving as inorganic hinges linking two functionalized viologens endowed with metal-ion coordinating properties. Based on detailed spectroscopic, electrochemical and computational data, we show that the one-electron electrochemical reduction of the viologen units in different dynamic metal/ligand mixtures leads to the formation of the same intramolecular π-dimer, regardless of the initial environment around the metallic precursor and of the relative ratio between metal and ligand initially introduced in solution. The large-scale electron-triggered reorganization of the building blocks introduced in solution thus involves drastic changes in the stoichiometry and stereochemistry of the palladium/viologen complexes proceeding in some cases through a palladium centered transcis isomerization of the coordinated ligands.  相似文献   
999.
A new set of free-base and zinc(II)-metallated, β-pyrrole-functionalized unsymmetrical push–pull porphyrins were designed and synthesized via β-mono- and dibrominated tetraphenylporphyrins using Sonogashira cross-coupling reactions. The ability of donors and acceptors on the push–pull porphyrins to produce high-potential charge separated states was investigated. The porphyrins were functionalized at the opposite β,β′-pyrrole positions of porphyrin ring bearing triphenylamine push groups and naphthalimide pull groups. Systematic studies involving optical absorption, steady-state and time-resolved emission revealed existence of intramolecular type interactions both in the ground and excited states. The push–pull nature of the molecular systems was supported by frontier orbitals generated on optimized structures, wherein delocalization of HOMO over the push group and LUMO over the pull group connecting the porphyrin π-system was witnessed. Electrochemical studies were performed to visualize the effect of push and pull groups on the overall redox potentials of the porphyrins. Spectroelectrochemical studies combined with frontier orbitals helped in characterizing the one-electron oxidized and reduced porphyrins. Finally, by performing transient absorption studies in polar benzonitrile, the ability of push–pull porphyrins to produce charge-separated states upon photoexcitation was confirmed and the measured rates were in the range of 109 s−1. The lifetime of the final charge separated state was around 5 ns. This study ascertains the importance of push–pull porphyrins in solar energy conversion and diverse optoelectronic applications, for which high-potential charge-separated states are warranted.  相似文献   
1000.
A new linear tetraphosphine containing a PNP phosphazane bridge, rac-bis[(diphenylphosphinomethyl)phenylphosphino]phenylamine (rac-dpmppan), was synthesized and utilized to support a series of Pd/Pt mixed metal tetranuclear chains, [Pd4−nPtn(μ-rac-dpmppan)2(XylNC)2](PF6)2 (XylNC=xylyl isocyanide; n=0: Pd4 ( 1 ), 1: PtPd3 ( 2 ), 2: PtPd2Pt ( 3 ), 2: Pt2Pd2 ( 4 ), 3: Pt2PdPt ( 5 )), in which the number and positions of additional Pt atoms were successfully controlled depending on the respective synthetic procedures using transformations from 1 to 3 through 2 and from 4 to 5 by redox-coupled exchange reactions. The 31P{1H} NMR and ESI mass spectra and X-ray diffraction analyses revealed almost identical tetranuclear structures, with slight contraction of metal-metal bonds according to incorporation of Pt atoms. The electronic absorption spectra of 1 – 5 exhibited characteristic bands at 635–510 nm with an energy propensity depending on the number and positions of Pt centres, which were assigned to HOMO (dσ*σσ*) to LUMO (dσ*σ*σ*) transition by theoretical calculations. The present results demonstrated that the electronic structures of Pd/Pt mixed-metal tetranuclear complexes are finely tuned as orbital-overlapping alloyed metal chains by atomically precise Pt incorporation in the Pd4 chain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号