首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2407篇
  免费   50篇
  国内免费   3篇
化学   1852篇
晶体学   17篇
力学   27篇
数学   255篇
物理学   309篇
  2024年   10篇
  2023年   14篇
  2022年   73篇
  2021年   104篇
  2020年   78篇
  2019年   75篇
  2018年   46篇
  2017年   51篇
  2016年   98篇
  2015年   70篇
  2014年   86篇
  2013年   122篇
  2012年   181篇
  2011年   209篇
  2010年   116篇
  2009年   101篇
  2008年   162篇
  2007年   132篇
  2006年   114篇
  2005年   132篇
  2004年   72篇
  2003年   67篇
  2002年   61篇
  2001年   29篇
  2000年   13篇
  1999年   19篇
  1998年   29篇
  1997年   12篇
  1996年   15篇
  1995年   15篇
  1994年   6篇
  1993年   11篇
  1992年   12篇
  1989年   9篇
  1988年   5篇
  1987年   5篇
  1985年   6篇
  1984年   13篇
  1983年   9篇
  1982年   10篇
  1981年   7篇
  1979年   6篇
  1978年   4篇
  1977年   5篇
  1976年   7篇
  1975年   5篇
  1974年   7篇
  1970年   3篇
  1969年   4篇
  1968年   3篇
排序方式: 共有2460条查询结果,搜索用时 15 毫秒
21.
22.
Abstract

Benzylic amide catenanes are a class of synthetically-accessible interlocked molecular rings which can rotate one through the other depending on the nature of the local environment. The rings contain four phenyl units each and interlocking also affords their packing in novel, highly interacting ways that may lead to unexpected properties thus opening up the possibility of developing new materials. Third harmonic generation in benzylic amide catenane solutions was measured at a wavelength of γ = 1064 nm, with the fundamental and the harmonic wavelengths in the region of transparency of the material. The thoroughly non resonant value of the hyperpolarisability γ(-3ω; ω, ω, ω) was found to be (6.5 ± 0.7) × 10?35 esu with a negligible imaginary part, in agreement with the value of (6.8 ± 0.9) × 10?35 esu calculated from a bond-additivity model of hyperpolarisability. The static second order hyperpolarisability predicted by a Molecular Orbital model was about a factor four less than the experimental value. Second hyperpolarizability values of several solvents were also measured at the fundamental wavelength of γ = 1064 nm.  相似文献   
23.
    
Abstract

Three iso-quinolinium ylids are studied by visible electron absorption spectroscopy from the point of view of their interactions with solvent molecules. The quantum mechanical calculations with Spartan 14 Program and solvatochromism of the intramolecular charge transfer visible absorption band of the studied molecules emphasized the prevalence of universal orientation-induction interactions in aprotic solvents and additionally the presence of hydrogen bond between the ylid molecules and the hydroxyl groups of the solvent molecules. The contribution of each type of interactions in the studied solutions is finally established by a multilinear regression applied to solvatochromic data.  相似文献   
24.
In this work we obtained sol–gel alumina coatings on AISI 304 stainless steel substrates. Alumina sols were prepared by using aluminum isopropoxide (AI) as precursor, acetic acid (HOAc) as catalyst, ethanol (C2H5OH) or isopropanol (C3H8O) as solvent, and water. The as-prepared solutions were deposited on stainless steel substrates by means of the dip-coating technique. The obtained composites were characterized by Fourier transform infrared spectroscopy (FTIR) and Auger electron spectroscopy (AES). We observed that the concentration of AlO type bonds in the obtained alumina coatings depends on the solvent type used, temperature and peptization state of the sol, withdrawal speed, and number of dipping cycles. AES experiments showed that the interface formed between the alumina coating and substrate surface is in general formed by several layers of different chemical compositions.  相似文献   
25.
Two small‐molecule–drug conjugates (SMDCs, 6 and 7 ) featuring lysosomally cleavable linkers (namely the Val–Ala and Phe–Lys peptide sequences) were synthesized by conjugation of the αvβ3‐integrin ligand cyclo[DKP–RGD]‐CH2NH2 ( 2 ) to the anticancer drug paclitaxel (PTX). A third cyclo[DKP–RGD]–PTX conjugate with a nonpeptide “uncleavable” linker ( 8 ) was also synthesized to be tested as a negative control. These three SMDCs were able to inhibit biotinylated vitronectin binding to the purified αVβ3‐integrin receptor at nanomolar concentrations and showed good stability at pH 7.4 and pH 5.5. Cleavage of the two peptide linkers was observed in the presence of lysosomal enzymes, whereas conjugate 8 , which possesses a nonpeptide “uncleavable” linker, remained intact under these conditions. The antiproliferative activities of the conjugates were evaluated against two isogenic cell lines expressing the integrin receptor at different levels: the acute lymphoblastic leukemia cell line CCRF‐CEM (αVβ3?) and its subclone CCRF‐CEM αVβ3Vβ3+). Fairly effective integrin targeting was displayed by the cyclo[DKP–RGD]–Val–Ala–PTX conjugate ( 6 ), which was found to differentially inhibit proliferation in antigen‐positive CCRF‐CEM αVβ3 versus antigen‐negative isogenic CCRF‐CEM cells. The total lack of activity displayed by the “uncleavable” cyclo[DKP–RGD]–PTX conjugate ( 8 ) clearly demonstrates the importance of the peptide linker for achieving the selective release of the cytotoxic payload.  相似文献   
26.
Metal catalyzed polymerizations are among the most important chemical reactions, accounting for the production of about 400 million tons per year of polymeric materials, 50 % of which are polyolefins. The CIRCC research units at the University of Salerno, founded by the late Professor Adolfo Zambelli, a coworker of Giulio Natta and a pioneer in the studies of stereospecific polymerization catalysts, has a consolidated expertise in this field. Although often considered a “mature” area of research, olefin polymerization catalysis continues to drive great interest of both industrial and academic scientists. On the other hand, strong political and economic pressure toward the development of “green” and possibly biodegradable alternatives to olefin-based polymers stimulated our group to direct increasing research efforts in the area of sustainable polymers. In this perspective, we focus on the most recent work from the CIRCC research units involved in homogeneous catalysis for polymerization of a variety of monomers, with the aim to address how the concepts and the expertise developed for olefin polymerization can be applied to the development of different metal-catalyzed polymerizations and copolymerizations. Of course, although the results are discussed in the frame of the most important literature contributions, a comprehensive review of such a wide and diversified topic is out of the scope of the paper. References to reviews covering the different types of metal catalyzed polymerizations are provided in each chapter.  相似文献   
27.
    
Zwitterionic polymers are widely employed hydrophilic building blocks for antifouling coatings with numerous applications across a wide range of fields, including but not limited to biomedical science, drug delivery and nanotechnology. Zwitterionic polymers are considered as an attractive alternative to polyethylene glycol because of their biocompatibility and effectiveness to prevent formation of biofilms. To this end, zwitterionic polymers are classified in two categories, namely polybetaines and polyampholytes. Yet, despite a fundamental interest to drive the development of new antifouling materials, the chemical composition of zwitterionic polymer remains severely limited. Here, we show that poly(sulfur ylides) that belong to the largely overlooked class of poly(ylides), effectively prevent the formation of biofilms from pathogenic bacteria. While surface energy analysis reveals strong hydrogen-bond acceptor capabilities of poly(sulfur ylide), membrane damage of pathogenic bacteria induced by poly(sulfur ylides) indicates toxicity towards bacteria while not affecting eucaryotic cells. Such synergistic effect of poly(sulfur ylides) offers distinct advantages over polyethylene glycol when designing new antifouling materials. We expect that our findings will pave the way for the development of a range of ylide-based materials with antifouling properties that have yet to be explored, opening up new directions at the interface of chemistry, biology, and material science.  相似文献   
28.
The knowledge about the interaction between plasma proteins and nanocarriers employed for in vivo delivery is fundamental to understand their biodistribution. Protein adsorption onto nanoparticle surface (protein corona) is strongly affected by vector surface characteristics. In general, the primary interaction is thought to be electrostatic, thus surface charge of carrier is supposed to play a central role in protein adsorption. Because protein corona composition can be critical in modifying the interactive surface that is recognized by cells, characterizing its formation onto lipid particles may serve as a fundamental predictive model for the in vivo efficiency of a lipidic vector. In the present work, protein coronas adsorbed onto three differently charged cationic liposome formulations were compared by a shotgun proteomic approach based on nano-liquid chromatography–high-resolution mass spectrometry. About 130 proteins were identified in each corona, with only small differences between the different cationic liposome formulations. However, this study could be useful for the future controlled design of colloidal drug carriers and possibly in the controlled creation of biocompatible surfaces of other devices that come into contact with proteins into body fluids.  相似文献   
29.
Corannulene dimers made up of corannulene monomers with different curvature and substituents were studied using M06-2X, B97D and ωB97XD functionals and 6-31+G* basis set. Corannulene molecules were substituted with five alternating Br, Cl, CH(3), C(2)H or CN units. Geometric results showed that substituents gave rise to small changes in the curvature of corannulene bowls. So, there was not a clear relationship between the curvature of bowls and the changes on interaction energy generated by addition of substituents in the bowl. Electron withdrawing substituents gave rise to a more positive molecular electrostatic potential (MEP) of the bowl, which was able to get a strong interaction with the negative MEP at the surface of a fullerene. Substitution with CN caused the largest effect, giving rise to the most positive MEP and to a large interaction energy of -24.64 kcal mol(-1), at the ωB97XD/6-31+G* level. Dispersive effects must be taken into account to explain the catching ability of the different substituted corannulenes. For unsubstituted dimers, calculations with DFT-D methods employing ωB97XD and B97D functionals led to similar results to those previously reported at the SCS-MP2/cc-pVTZ level for corannulene dimers (A. Sygula and S. Saeb?, Int. J. Quant. Chem., 2009, 109, 65). In particular, the ωB97XD functional led to a difference of only 0.35 kcal mol(-1), regarding MP2 interaction energy for corannulene dimers. On the other hand, the M06-2X functional showed a general considerable underestimation of interaction energies. This functional worked quite well to study trends, but not to obtain absolute interaction energies.  相似文献   
30.
We describe a new class of water soluble metallosurfactant molecules based on luminescent neutral iridium(III) complexes. The compounds possess an alkyl chain terminated with a negatively charged group, a sulphate. Due to their amphiphilic nature they assemble in aggregates in water and their photophysical properties, as well as the morphological characterization of the assemblies are presented. In particular, UV-Vis absorption, steady-state and time-resolved emission spectroscopy, dynamic light scattering and scanning electron microscopy techniques have been employed towards the analysis of the assemblies in different media. Comparison with the single components shows that the aggregates have very different photophysical properties. Importantly, the change in colour upon self-assembly is a remarkable feature which could be used for the design of probes which can change properties in different environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号