首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256895篇
  免费   2975篇
  国内免费   996篇
化学   139665篇
晶体学   3776篇
力学   10265篇
综合类   2篇
数学   29637篇
物理学   77521篇
  2021年   1850篇
  2020年   2127篇
  2019年   2369篇
  2018年   2701篇
  2017年   2600篇
  2016年   4359篇
  2015年   3018篇
  2014年   4407篇
  2013年   11927篇
  2012年   9059篇
  2011年   11137篇
  2010年   7151篇
  2009年   6994篇
  2008年   9833篇
  2007年   9952篇
  2006年   9184篇
  2005年   8564篇
  2004年   7612篇
  2003年   6635篇
  2002年   6589篇
  2001年   7353篇
  2000年   5493篇
  1999年   4359篇
  1998年   3649篇
  1997年   3690篇
  1996年   3440篇
  1995年   3225篇
  1994年   3047篇
  1993年   3104篇
  1992年   3372篇
  1991年   3414篇
  1990年   3205篇
  1989年   3160篇
  1988年   3234篇
  1987年   3097篇
  1986年   2987篇
  1985年   4073篇
  1984年   4242篇
  1983年   3455篇
  1982年   3851篇
  1981年   3754篇
  1980年   3604篇
  1979年   3624篇
  1978年   3880篇
  1977年   3691篇
  1976年   3879篇
  1975年   3452篇
  1974年   3573篇
  1973年   3881篇
  1972年   2346篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
41.
Fine magnetite nanoparticles, both electrostatically stabilized and nonstabilized, were synthesized in situ by precipitation of Fe(II) and Fe(III) salts in alkaline medium. Magnetic poly(glycidyl methacrylate) (PGMA) microspheres with core‐shell structure, where Fe3O4 is the magnetic core and PGMA is the shell, were obtained by dispersion polymerization initiated with 2,2′‐azobisisobutyronitrile (AIBN), 4,4′‐azobis(4‐cyanovaleric acid) (ACVA), or ammonium persulfate (APS) in ethanol containing poly(vinylpyrrolidone) or ethylcellulose stabilizer in the presence of iron oxide ferrofluid. The average microsphere size ranged from 100 nm to 2 μm. The effects of the nature of ferrofluid, polymerization temperature, monomer, initiator, and stabilizer concentration on the PGMA particle size and polydispersity were studied. The particles contained 2–24 wt % of iron. AIBN produced larger microspheres than APS or ACVA. Polymers encapsulating electrostatically stabilized iron oxide particles contained lower amounts of oxirane groups compared with those obtained with untreated ferrofluid. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5827–5837, 2004  相似文献   
42.
Poly(pyridine ether)s were prepared in two ways: the polycondensation of silylated 1,1,1‐tris(4‐hydroxyphenyl)ethane (THPE) with 2,6‐difluoropyridine (method A) and the polycondensation of free THPE with 2,6‐dichloropyridine (method B). With method A, the THPE/difluoropyridine feed ratio was varied from 1.0:1.0 to 1.0:1.6. Cycles, bicycles, and multicycles were the main reaction products, and crosslinking was never observed. When ideal stoichiometry was used exclusively, multicycles free of functional groups were obtained. These multicycles were detectable in matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectra up to B38C76 with a mass of approximately 32,000 Da. With method B, the reaction conditions were varied at a fixed feed ratio to achieve an optimum for the preparation of multicyclic polyethers, but because of the lower reactivity of 2,6‐dichloropyridine, a quantitative conversion was not achieved. The reaction products were characterized with MALDI‐TOF mass spectrometry, viscosity measurements, and size exclusion chromatography. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5725–5735, 2004  相似文献   
43.
To develop a greater understanding of interfacial interactions between a semicrystalline polymer and a glassy polymer, adhesion tests were performed on very thin layers of poly(ethylene oxide) (PEO) sandwiched between two layers of poly(tetramethyl bisphenol A polycarbonate) (TMPC). The tests were designed to provide intimate contact between the surfaces while they were heated above the melting point of the PEO and cooled back to room temperature. A contact mechanics approach, based on the Johnson, Kendall, and Roberts theory, was used to determine values of the energy release rate describing the energetic driving force for crack propagation within the interfacial region. The ability to measure crack propagation at large values of the energy release rate was limited by rupture of the silicone elastomer that was used to provide a sufficiently compliant matrix for the adhesion experiment. By cycling the tensile stress at relatively low loading levels, we were able to measure fatigue crack propagation at values of the energy release rate that did not result in failure of the elastomer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3809–3821, 2004  相似文献   
44.
A series of metallodendrimers, assembled by means of bis(terpyridinyl)Ru(II) connectivity on poly(propylene imine) dendrimer scaffolds, with homogeneous or heterogeneous surfaces, were prepared. Differential scanning calorimetry and thermogravimetric analysis were used to determine their thermal behavior, glass‐transition temperatures, and the decomposition kinetics and temperatures; no synergy effects for these properties were observed for the heterogeneously surfaced constructs in contrast to the corresponding homogeneously coated materials, which exhibited different values depending on their surface functionalities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1487–1495, 2004  相似文献   
45.
The chemical composition of glycosaminoglycan (GAG) hydrogels was found to have a profound effect on the physical properties of gels. Hyaluronan (HA) and chondroitin sulfate (CS) were each modified with adipic dihydrazide (ADH) with carbodiimide chemistry. The resulting polymer was crosslinked with various concentrations of poly(ethylene glycol) dialdehyde (PEG‐diald) to produce a series of hydrogels. The physical properties of these GAG hydrogels varied in a concentration‐dependent fashion. Maximal crosslinking was observed at a theoretical crosslinking of 50% for the HA‐ADH‐PEG‐diald hydrogels and 75% for the CS‐ADH‐PEG‐diald hydrogels. Adding PEG‐diald beyond the optimum for crosslinking prolonged the in vitro enzymatic degradation time of the hydrogels. The swelling of the crosslinked GAG hydrogels was correlated with the amount of PEG‐diald used rather than with the crosslinking density. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4344–4356, 2004  相似文献   
46.
For as‐extruded amorphous and biaxially orientated polyester films based on poly(ethylene terephthalate), poly(ethylene naphthalate), and copolymers containing poly(ethylene terephthalate) and poly(ethylene naphthalate) moieties, permeability, diffusion, and solubility coefficients are interpreted in terms of chain mobility. The influence of polymer morphology is determined by comparison of the data for as‐extruded amorphous sheets and materials produced with different biaxial draw ratios. The crystallinities of the samples were assessed using differential scanning calorimetry and density measurements. Changes in mobility at a molecular level were investigated using dielectric spectroscopy and dynamic mechanical thermal analysis. The study, in conjunction with our earlier work, leads to the conclusion that the key to understanding differences in gas transport is the difference in local chain motions rather than in free volume. This was illustrated by the permeability results for He, Ar, N2, and O2 in the range of polyesters. However, the permeability of CO2 was found to require alternative explanations because of polymer–penetrant interactions. For biaxially oriented samples, the differences in diffusivity are not only due to differences in local chain motions, but also additional constraints resulting from the increased crystallinity and chain rigidity—which also act to hinder segmental mobility. The effectiveness of the reduction in permeability in the biaxially oriented films is consequently determined by the ability of the polymer chains to effectively align and form crystalline structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2916–2929, 2004  相似文献   
47.
Novel labeling reagents, called MS probes, which possess a positively charged quaternary amine moiety and can transform a neutral analyte into a charged compound by simply mixing with the analyte and allowing the mixture to stand from several minutes to 30 min at room temperature or while heating to 50 degrees C, were designed and synthesized for the highly sensitive detection of carbonyl, alcohol, carboxylic acid and primary amine samples by electrospray ionization mass spectrometry (ESI-MS). The positively charged products can be detected with high sensitivity in an ESI-MS system, which is the most popular liquid MS instrument. All of the labeled products showed a remarkably large increase in the molecular-ion peak abundance detection sensitivity of over 500-fold at picomolar concentration levels compared to that of unlabeled analytes in an ESI-MS system. These MS probes, used together with liquid MS detection, are widely applicable as a convenient method for the highly sensitive detection of less than picomolar levels of analytes, and therefore greatly enhance the power of ESI-MS analysis.  相似文献   
48.
One of the essential differences in the design of bubble pressure tensiometers consists in the geometry of the measuring capillaries. To reach extremely short adsorption times of milliseconds and below, the so-called deadtime of the capillaries must be of the order of some 10 ms. In particular, for concentrated surfactant solutions, such as micellar solutions, short deadtimes are needed to minimize the initial surfactant load of the generated bubbles. A theoretical model is derived and confirmed by experiments performed for a wide range of experimental conditions, mainly in respect to variations in deadtime and bubble volume.  相似文献   
49.
A novel membrane coated platinum-wire electrode (MCPWE) based on N,N'-bis(2-thienylmethylene)-1,2-diaminobenzene (BTMD) for highly selective determination of Ag+ ion has been developed. The influences of membrane composition and pH on the potentiometric responses of electrode were investigated. The potentiometric responses are independent of the pH of the test solution in the range of 5.0 - 9.0. The electrode shows a linear response for Ag+ ion over the concentration range of 1.0 x 10(-60 to 1.0 x 10(-1) M with a lower detection limit of 6.0 x 10(-7) M. The electrode possesses a Nernstian slope of 59.7 mV decade(-1) and a fast response time of < or = 17 s and can be used for at least 2 months without any observable deviation. The proposed electrode displayed very good selectivity for Ag+ ion with respect to NH4+ and alkali, alkaline earth and some common transition metal ions. The practical utility of the electrode has been demonstrated by its use as the indicator electrode in the potentiometric titration of an AgNO3 solution with a NaI solution and in determination of the silver content of a developed radiological film.  相似文献   
50.
A sequential injection methodology for the spectrophotometric determination of calcium, magnesium and alkalinity in water samples is proposed. A single manifold is used for the determination of the three analytes, and the same protocol sequence allows the sequential determination of calcium and magnesium (the sum corresponds to the water hardness). The determination of both metals is based on their reaction with cresolphtalein complexone; mutual interference is minimized by using 8-hydroxyquinoline for the determination of calcium and ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) for the determination of magnesium. Alkalinity determination is based on a reaction with acetic acid, and corresponding color change of Bromcresol Green. Working ranges of 0.5 - 5 mg dm(-3) for Ca, 0.5 - 10 mg dm(-3) for Mg, and 10 - 100 mg HCO3- dm(-3), for alkalinity have been achieved. The results for water samples were comparable to those of the reference methods and to a certified reference water sample. RSDs lower than 5% were obtained, a low reagent consumption and a reduced volume of effluent have been accomplished. The determination rate for calcium and magnesium is 80 h(-1), corresponding to 40 h(-1) per element, while 65 determinations of alkalinity per hour could be carried out.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号