首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218229篇
  免费   2584篇
  国内免费   633篇
化学   121199篇
晶体学   3801篇
力学   8434篇
综合类   11篇
数学   21943篇
物理学   66058篇
  2021年   1754篇
  2020年   2120篇
  2019年   2300篇
  2018年   2491篇
  2017年   2578篇
  2016年   4104篇
  2015年   2655篇
  2014年   4092篇
  2013年   9941篇
  2012年   7583篇
  2011年   9275篇
  2010年   6370篇
  2009年   6230篇
  2008年   8114篇
  2007年   8001篇
  2006年   7602篇
  2005年   6873篇
  2004年   6219篇
  2003年   5608篇
  2002年   5401篇
  2001年   6327篇
  2000年   4785篇
  1999年   3665篇
  1998年   2872篇
  1997年   2837篇
  1996年   2761篇
  1995年   2558篇
  1994年   2451篇
  1993年   2279篇
  1992年   2919篇
  1991年   2834篇
  1990年   2754篇
  1989年   2763篇
  1988年   2802篇
  1987年   2796篇
  1986年   2667篇
  1985年   3407篇
  1984年   3425篇
  1983年   2663篇
  1982年   2827篇
  1981年   2886篇
  1980年   2637篇
  1979年   2960篇
  1978年   2973篇
  1977年   3075篇
  1976年   2890篇
  1975年   2622篇
  1974年   2576篇
  1973年   2529篇
  1968年   1730篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Glutathione (GSH-reduced form) is a tripeptide that plays a vital role as an antioxidant to remove xenobiotics in the human body and changes in GSH levels are a marker for the progression of various diseases. In this context, a highly sensitive non-enzymatic electrochemical biosensor for the detection of GSH has been developed using reduced graphene oxide Manganese oxide (rGMnO) nanocomposite as the nano-interface. Initially, graphene oxide was synthesized by Hummer's method and then thermally reduced in the presence of MnO2 in a blast furnace to obtain rGMnO nanocomposite. The nanocomposite was characterized to validate its structure and morphological properties via Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry and amperometry studies showed that upon the addition of GSH, the Pt/rGMnO modified working electrode exhibited a linear response in the range of 1–100 μM at an input voltage of −0.62 V. The developed sensor was found to have a sensitivity of 0.3256 μA μM−1 and LOD of 970 nM with a recovery of 92–104 % in real blood serum samples.  相似文献   
12.
Homologation of trisubstituted fluoroalkenes followed by allylboration of aldehyde, ketone and imine substrates is suitable for synthesis of β-fluorohydrin and amine products. In the presence of (R)-iodo-BINOL catalyst enantioselectivities up to 99 % can be achieved by formation of a single stereoisomer with adjacent stereocenters, of which one is a tertiary C−F center.  相似文献   
13.
Decarboxylative halogenation reactions of alkyl carboxylic acids are highly valuable reactions for the synthesis of structurally diverse alkyl halides. However, many reported protocols rely on stoichiometric strong oxidants or highly electrophilic halogenating agents. Herein, we describe visible-light photoredox-catalyzed decarboxylative halogenation reactions of N-hydroxyphthalimide-activated carboxylic acids that avoid stoichiometric oxidants and use inexpensive inorganic halide salts as the halogenating agents. Bromination with lithium bromide proceeds under simple, transition-metal-free conditions using an organic photoredox catalyst and no other additives, whereas dual photoredox-copper catalysis is required for chlorination with lithium chloride. The mild conditions display excellent functional-group tolerance, which is demonstrated through the transformation of a diverse range of structurally complex carboxylic acid containing natural products into the corresponding alkyl bromides and chlorides. In addition, we show the generality of the dual photoredox-copper-catalyzed decarboxylative functionalization with inorganic salts by extension to thiocyanation with potassium thiocyanide, which was applied to the synthesis of complex alkyl thiocyanates.  相似文献   
14.
Unprecedented opportunities exist for the generation of advanced nanotechnologies based on synthetic micro/nanomotors (MNMs), such as active transport of medical agents or the removal of pollutants. In this regard, great efforts have been dedicated toward controlling MNM motion (e.g., speed, directionality). This was generally performed by precise engineering and optimizing of the motors′ chassis, engine, powering mode (i.e., chemical or physical), and mechanism of motion. Recently, new insights have emerged to control motors mobility, mainly by the inclusion of different modes that drive propulsion. With high degree of synchronization, these modes work providing the required level of control. In this Minireview, we discuss the diverse factors that impact motion; these include MNM morphology, modes of mobility, and how control over motion was achieved. Moreover, we highlight the main limitations that need to be overcome so that such motion control can be translated into real applications.  相似文献   
15.
Owing to high modularity and synthetic tunability, metal–organic frameworks (MOFs) on textiles are poised to contribute to the development of state-of-the-art wearable systems with multifunctional performance. While these composite materials have demonstrated promising functions in sensing, filtration, detoxification, and biomedicine, their applicability in multifunctional systems is only beginning to materialize. This review highlights the multifunctionality and versatility of MOF-integrated textile systems. It summarizes the operational goals of MOF@textile composites, encompassing sensing, filtration, detoxification, drug delivery, UV protection, and photocatalysis. Building upon these recent advances, this review concludes with an outlook on emerging opportunities for the diverse applications of MOF@textile systems in the realm of smart wearables.  相似文献   
16.
On-surface synthesis is at the verge of emerging as the method of choice for the generation and visualization of unstable or unconventional molecules, which could not be obtained via traditional synthetic methods. A case in point is the on-surface synthesis of the structurally elusive cyclotriphosphazene (P3N3), an inorganic aromatic analogue of benzene. Here, we report the preparation of this fleetingly existing species on Cu(111) and Au(111) surfaces at 5.2 K through molecular manipulation with unprecedented precision, i.e., voltage pulse-induced sextuple dechlorination of an ultra-small (about 6 Å) hexachlorophosphazene P3N3Cl6 precursor by the tip of a scanning probe microscope. Real-space atomic-level imaging of cyclotriphosphazene reveals its planar D3h-symmetric ring structure. Furthermore, this demasking strategy has been expanded to generate cyclotriphosphazene from a hexaazide precursor P3N21 via a different stimulation method (photolysis) for complementary measurements by matrix isolation infrared and ultraviolet spectroscopy.  相似文献   
17.
In a quest to track down the origin of coherent vibrational motions observed in femtosecond pump-probe transients, whether they arise from ground/excited electronic state of solute or are contributed by the solvent, we demonstrate a method for extricating vibrations under resonant and non-resonant impulsive excitations using a diatomic solute in condensed phase (iodine in carbon tetrachloride) with aid of spectral dispersion of the chirped broadband probe. Most importantly, we show how a sum over intensities for a select region of detection wavelengths and Fourier transform of data over select temporal window untwine contributions from vibrational modes of different origins. Thus, in a single pump-probe experiment, vibrational features specific to solute as well as solvent are disentangled that are otherwise spectrally overlapping and are non-separable in conventional (spontaneous/stimulated) Raman spectroscopy employing narrowband excitation. We envision wide-ranging applications of this method to unveil vibrational features in complex molecular systems.  相似文献   
18.
Cobalt complexes are extensively studied as bioinspired models for non-heme oxygenases as they facilitate both the stabilization and characterization of metal-oxygen intermediates. As an analog to the well-known Co(cyclam) complex Co{N4} (cyclam=1,4,8,11-tetraazacyclotetradecane), the CoII complex Co{i-N4} with the isomeric isocyclam ligand (isocyclam=1,4,7,11-tetraazacyclotetradecane) was synthesized and characterized. Despite the identical N4 donor set of both complexes, Co{i-N4} enables the 2e/2H+ reduction of O2 with a lower overpotential (ηeff of 385 mV vs. 540 mV for Co{N4} ), albeit with a diminished turnover frequency. Characterization of the intermediates formed upon O2 activation of Co{i-N4} reveals a structurally identified stable μ-peroxo CoIII dimer as the main product. A superoxo CoIII species is also formed as a minor product, as indicated by EPR spectroscopy. In further reactivity studies, the electrophilicity of these in situ generated Co−O2 species was demonstrated by the oxidation of the O−H bond of TEMPO−H (2,2,6,6-tetramethylpiperidin-1-ol) via a H atom abstraction process. Unlike the known Co(cyclam), Co{i-N4} can be employed in oxygen atom transfer reactions oxidizing triphenylphosphine to the corresponding phosphine oxide highlighting the impact of geometrical modifications of the ligand while preserving the ring size and donor atom set on the reactivity of biomimetic oxygen activating complexes.  相似文献   
19.
In the last decades, various efforts have been made to synthesize optimal glycotripods for targeting trimeric glycoproteins like asialoglycoprotein receptor, hemagglutinin, and langerin. All these trimeric glycoproteins have sugar binding pockets which are highly selective for a particular carbohydrate ligand. Optimized glycotripods are high affinity binders and have been used for delivering drugs or even applied as drug candidates. The selection of the tripodal base scaffold together with the length and flexibility of the linker between the scaffold and sugar residue, as important design parameters are discussed in this review.  相似文献   
20.
Construction of receptors with binding sites of specific size, shape, and functional groups is important to both chemistry and biology. Covalent imprinting of a photocleavable template within surface–core doubly cross‐linked micelles yielded carboxylic acid‐containing hydrophobic pockets within the water‐soluble molecularly imprinted nanoparticles. The functionalized binding pockets were characterized by their binding of amine‐ and acid‐functionalized guests under different pH values. The nanoparticles, on average, contained one binding site per particle and displayed highly selective binding among structural analogues. The binding sites could be modified further by covalent chemistry to modulate their binding properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号