首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   378篇
  免费   3篇
化学   237篇
晶体学   1篇
力学   17篇
数学   71篇
物理学   55篇
  2022年   4篇
  2021年   3篇
  2020年   5篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   7篇
  2015年   6篇
  2014年   11篇
  2013年   20篇
  2012年   24篇
  2011年   25篇
  2010年   11篇
  2009年   12篇
  2008年   26篇
  2007年   16篇
  2006年   20篇
  2005年   10篇
  2004年   11篇
  2003年   6篇
  2002年   9篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   6篇
  1997年   3篇
  1996年   6篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1991年   3篇
  1989年   4篇
  1988年   10篇
  1986年   9篇
  1985年   7篇
  1984年   7篇
  1982年   4篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1977年   9篇
  1976年   5篇
  1975年   4篇
  1974年   4篇
  1973年   4篇
  1970年   2篇
  1967年   2篇
  1935年   2篇
  1930年   2篇
排序方式: 共有381条查询结果,搜索用时 15 毫秒
11.
12.
This paper demonstrates development of electrophoretically mediated micro analysis (EMMA), for screening protein tyrosine phosphatase (PTP) inhibitors in natural extracts. It is demonstrated that capillary electrophoresis (CE) separation of the substrate and the product allows for using the assay in an on-column format to monitor the reaction without typically used fluorogenic substrates. Michaelis-Menten kinetics parameters calculated based on the EMMA results (Km = 1.2-1.5 microM) were in a good agreement (Km = 1.0-1.5 microM) obtained using an off-line CE functional assay (CE FA). EMMA of PTP titrated with different concentrations of ligand demonstrated the peak-shift phenomenon normally seen in affinity capillary electrophoresis. This feature of EMMA gives an indication of the binding affinity of the ligand in addition to its functional activity, providing another dimension in characterization of the protein-inhibitor interaction. It was demonstrated that simultaneous screening of the primary PTP target and a secondary, counter target (PTP-C) using the EMMA format can be used to prioritize hits based on their specificity.  相似文献   
13.
Acyclic dithiol and cyclic disulfide forms of the peptides Ac-Cys-Pro-Xaa-Cys-NH2 (Xaa = Phe, His, Tyr, Gly, and Thr) and Ac-Cys-Gly-Pro-Cys-NH2 and the peptide Ac-Ala-Gly-Pro-Ala-NH2 were synthesized and characterized by mass spectrometry and NMR spectroscopy. Rate constants kct and ktc for cis-to-trans and trans-to-cis isomerization, respectively, across the Cys-Pro or Gly-Pro peptide bonds were determined by magnetization transfer NMR techniques over a range of temperatures, and activation parameters were derived from the temperature dependence of the rate constants. It was found that constraints imposed by the disulfide bond confer an unexpected rate enhancement for cis/trans isomerization, ranging from a factor of 2 to 13. It is proposed that the rate enhancements are a result of an intramolecular catalysis mechanism in which the NH proton of the Pro-Xaa peptide bond hydrogen bonds to the proline nitrogen in the transition state. The peptides Ac-Cys-Pro-Xaa-Cys-NH2 and Ac-Cys-Gly-Pro-Cys-NH2 are model compounds for proline-containing active sites of the thioredoxin superfamily of oxidoreductase enzymes; the results suggest that the backbones of the active sites of the oxidized form of these enzymes may have unusual conformational flexibility.  相似文献   
14.
Polysaccharide lyases (PLs) are enzymes that cleave glycosidic linkages in hexuronate polysaccharides, such as homogalacturonan (HG), using a β-elimination mechanism. Traditionally, PL activities on HG have been associated with catalytic calcium cofactors, unusually high pH optima, and arginine Brønstead bases. Recently, however, PL families that harness transition metal cofactors, utilize lysine and histidine Brønstead bases, and display more neutral pH optima have been described. One such family is PL2, which has members found primarily in phytopathogenic (e.g., Dickeya spp. and Pectobacterium spp.) or enteropathogenic (e.g., Yersinia spp.) bacterial species. PL2 is divided into two major subfamilies that are correlated with either an endolytic or exolytic activity. This study has focused on the activity of a PL2 member, which is not classified within either subfamily and helps to illuminate the origin of enzyme activities within the family. In addition, the role of Mg2+ as a preferential catalytic metal for an intracellular PL2 (PaePL2) is described. The implications for the relationship between catalytic metal selectivity and the cellular location of pectate lyase-mediated catalysis are discussed.  相似文献   
15.
16.
A new uranyl containing metal–organic framework, RPL-1 : [(UO2)2(C28H18O8)] . H2O (RPL for Radiochemical Processing Laboratory), was prepared, structurally characterized, and the solid-state photoluminescence properties explored. Single crystal X-ray diffraction data reveals the structure of RPL - 1 consists of two crystallographically unique three dimensional, interpenetrating nets with a 4,3-connected tbo topology. Each net contains large pores with an average width of 22.8 Å and is formed from monomeric, hexagonal bipyramidal uranyl nodes that are linked via 1,2,4,5-tetrakis(4-carboxyphenyl)benzene (TCPB) ligands. The thermal and photophysical properties of RPL-1 were investigated using thermogravimetric analysis and absorbance, fluorescence, and lifetime spectroscopies. The material displays excellent thermal stability and temperature dependent uranyl and TCPB luminescence. The framework is stable in aqueous media and due to the large void space (constituting 76 % of the unit cell by volume) can sequester organic dyes, the uptake of which induces a visible change to the color of the material.  相似文献   
17.
Composite energetic material response to electrical stimuli was investigated and a correlation between electrical conductivity and ignition sensitivity was examined. The composites consisted of micrometer particle aluminum combined with another metal, metal oxide, or fluoropolymer. Of the nine tested mixtures, aluminum (Al) with copper oxide (CuO) was the only mixture to ignite by electrostatic discharge. Under the loose powder conditions of these experiments, the Al–CuO minimum ignition energy (MIE) is 25 mJ and exhibited an electrical conductivity two orders of magnitude higher than the next composite. This study showed a similar trend in MIE for ignition triggered by a discharged spark compared with a thermal hot wire source.  相似文献   
18.
Soft robots are bio-inspired, highly deformable robots with the ability to interact with workpieces in a manner that complements their hard robot counterparts. To develop practical applications and reproducible designs of soft robots, new models are necessary to describe their kinematics and dynamics. In the present work, we describe experimental and numerical investigations of a popular pneumatically-actuated soft continuum arm. These works enable us to derive constitutive relations and develop a rod model for large deformations of the arm that faithfully describes its bending behavior. We show how the resulting non-classical constitutive relation can be defined either through experiments or through quasi-static finite element simulations. With the help of this relation, the resulting rod model can be used to study the dynamics of the soft robot arm in a fast and tractable manner. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
19.
Herein a simple analytical method is presented for the characterization of biomolecule adsorption on cyclo olefin polymer (COP, trade name: Zeonor®) substrates which are widely used in microfluidic lab-on-a-chip devices. These Zeonor® substrates do not possess native functional groups for specific reactions with biomolecules. Therefore, depending on the application, such substrates must be functionalized by surface chemistry methods to either enhance or suppress biomolecular adsorption. This work demonstrates a microfluidic method for evaluating the adsorption of antibodies and oligonucleotides surfaces. The method uses centrifugal microfluidic flow-through chips and can easily be implemented using common equipment such as a spin coater. The working principle is very simple. The user adds 40 L of the solution containing the sample to the starting side of a microfluidic channel, where it is moved through by centrifugal force. Some molecules are adsorbed in the channel. The sample is then collected at the other end in a small reservoir and the biomolecule concentration is measured. As a pilot application, we characterized the adsorption of goat anti-human IgG and a 20-mer DNA on Zeonor®, and on three types of functionalized Zeonor: 3-aminopropyltriethoxysilane (APTES) modified surface with mainly positive charge, negatively charged surface with immobilized bovine serum albumin (BSA), and neutral, hydrogel-like film with polyethylene glycol (PEG) characteristics. This simple analytical approach adds to the fundamental understanding of the interaction forces in real, microfluidic systems. This method provides a straightforward and rapid way to screen surface compositions and chemistry, and relate these to their effects on the sensitivity and resistance to non-specific binding of bioassays using them. In an additional set of experiments, the surface area of the channels in this universal microfluidic chip was increased by precision milling of microscale trenches. This modified surface was then coated with APTES and tested for its potential to serve as a unique protein dilution feature.  相似文献   
20.
Pluronic F127, a triblock copolymer of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), has generated considerable interest as a drug delivery vehicle due to its ability to gel at physiological temperatures. This work examines the gelation behavior of Pluronic F127 in the presence of a series of hydrophobic pharmaceuticals, to determine whether there is any correlation between gelation and physicochemical parameters of drug solutes. The study includes the local anesthetics dibucaine, lidocaine, and tetracaine; the pharmaceutical additives methyl paraben, ethyl paraben, and propyl paraben; the anti-cancer agents paclitaxel and baccatin III; and the anti-inflammatory agent sulindac. The results indicate that the presence of local anesthetics and pharmaceutical additives allows F127 solutions to form gels at lower copolymer concentrations; local anesthetics and pharmaceutical additives also shift gelation down to a lower gelation temperature. This behavior is strongly dependent on drug solubility; poorly soluble drugs (paclitaxel, baccatin III, sulindac) do not change the lower gelation temperature or minimum F127 concentration for gelation. An equation relating the decrease in gelation temperature to drug solubility is presented, and the equation fits the data well. The results have significant positive implications on the toxicity and economic issues related to use of Pluronic F127 in drug delivery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号