首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   2篇
  国内免费   1篇
化学   109篇
晶体学   8篇
力学   6篇
数学   13篇
物理学   31篇
  2022年   7篇
  2021年   5篇
  2020年   9篇
  2019年   9篇
  2018年   2篇
  2017年   1篇
  2016年   6篇
  2015年   5篇
  2013年   13篇
  2012年   14篇
  2011年   12篇
  2010年   4篇
  2009年   3篇
  2008年   10篇
  2007年   13篇
  2006年   5篇
  2005年   9篇
  2004年   7篇
  2003年   8篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   3篇
  1990年   1篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
排序方式: 共有167条查询结果,搜索用时 31 毫秒
131.
Novel substituted phenol-based new symmetrical bis(2-hydroxy-3-isopropyl-6-methyl-benzaldehyde)ethylenediamine (1) has been designed and synthesized. The compound 1 fluorometrically recognized Cu2+ ion in CH3OH/H2O (90:10, v/v) by exhibiting an increase in emission upon complexation. In addition, Cu2+ gave rise to a change in colour of the solution of compound 1, which was clearly visible to the naked eye under UV irradiation. The association constant (K) of compound 1 with Cu2+ ion was computed with the Benesi-Hildebrand plot and Scatchard plot at 43,000 M?1 and 43,011 M?1 respectively.  相似文献   
132.
133.
A weighting w of the edges of a graph G induces a colouring of the vertices of G where the colour of vertex v, denoted cv, is . We show that the edges of every graph that does not contain a component isomorphic to K2 can be weighted from the set {1, . . . ,30} such that in the resulting vertex-colouring of G, for every edge (u,v) of G, cucv.  相似文献   
134.
[(CH3)2NH2]Zn(HCOO)3, 1, adopts a structure that is analogous to that of a traditional perovskite, ABX3, with A = [(CH3)2NH2], B = Zn, and X = HCOO. The hydrogen atoms of the dimethyl ammonium cation, which hydrogen bond to oxygen atoms of the formate framework, are disordered at room temperature. X-ray powder diffraction, dielectric constant, and specific heat data show that 1 undergoes an order-disorder phase transition on cooling below 156 K. We present evidence that this is a classical paraelectric to antiferroelectric phase transition that is driven by ordering of the hydrogen atoms. This sort of electrical ordering associated with order-disorder phase transition is unprecedented in hybrid frameworks and opens up an exciting new direction in rational synthetic strategies to create extended hybrid networks for applications in ferroic-related fields.  相似文献   
135.
High-frequency electron paramagnetic resonance (HFEPR) data are presented for four closely related tetranuclear Ni(II) complexes, [Ni(hmp)(MeOH)Cl]4.H2O (1a), [Ni(hmp)(MeOH)Br]4.H2O (1b), [Ni(hmp)(EtOH)Cl]4.H2O (2), and [Ni(hmp)(dmb)Cl]4 (3) (where hmp(-) is the anion of 2-hydroxymethylpyridine and dmb is 3,3'-dimethyl-1-butanol), which exhibit magnetic bistability (hysteresis) and fast magnetization tunneling at low temperatures, properties which suggest they are single-molecule magnets (SMMs). The HFEPR spectra confirm spin S = 4 ground states and dominant uniaxial anisotropy (DSz(2), D < 0) for all four complexes, which are the essential ingredients for a SMM. The individual fine structure peaks (due to zero-field splitting) for complexes 1a, 1b, and 2 are rather broad. They also exhibit further (significant) splitting, which can be explained by the fact that there exists two crystallographically distinct Ni 4 sites in the lattices for these complexes, with associated differences in metal-ligand bond lengths and different zero-field splitting (ZFS) parameters. The broad EPR lines, meanwhile, may be attributed to ligand and solvent disorder, which results in additional distributions of microenvironments. In the case of complex 3, there are no solvate molecules in the structure, and only one distinct Ni 4 molecule in the lattice. Consequently, the HFEPR data for complex 3 are extremely sharp. As the temperature of a crystal of complex 3 is decreased, the HFEPR spectrum splits abruptly at approximately 46 K into two patterns with very slightly different ZFS parameters. Heat capacity data suggest that this is caused by a structural transition at 46.6 K. A single-crystal X-ray structure at 12(2) K indicates large thermal parameters on the terminal methyl groups of the dmb (3,3-dimethyl-1-butanol) ligand. Most likely there exists dynamic disorder of parts of the dmb ligand above 46.6 K; an order-disorder structural phase transition at 46.6 K then removes some of the motion. A further decrease in temperature (<6 K) leads to further fine structure splittings for complex 3. This behavior is thought to be due to the onset of short-range magnetic correlations/coherences between molecules caused by weak intermolecular magnetic exchange interactions.  相似文献   
136.
The low-temperature antiferroelectric (AFE) phase of NH4H2PO4 corresponds to H ordering in O-H-O bridges leading to H2PO4 group polarizations perpendicular to the tetragonal c axis and alternating in chains. We determine the microscopic origin of such order by means of first-principles calculations in the framework of the density functional theory. The formation of N-Hcdots, three dots, centeredO bridges with correlated charge transfers and NH4+ group distortions turn out to be essential in stabilizing the AFE configuration against a c-polarized ferroelectric (FE) phase, as well as other FE states polarized perpendicular to the c axis. These FE states lie only a few meV above the AFE phase, which explains the observation of FE-AFE phase coexistence near the AFE transition.  相似文献   
137.
We have performed a rigorous theoretical study of the quantum translation-rotation (T-R) dynamics of one and two H2 and D2 molecules confined inside the large hexakaidecahedral (5(12)6(4)) cage of the sII clathrate hydrate. For a single encapsulated H2 and D2 molecule, accurate quantum five-dimensional calculations of the T-R energy levels and wave functions are performed that include explicitly, as fully coupled, all three translational and the two rotational degrees of freedom of the hydrogen molecule, while the cage is taken to be rigid. In addition, the ground-state properties, energetics, and spatial distribution of one and two p-H2 and o-D2 molecules in the large cage are calculated rigorously using the diffusion Monte Carlo method. These calculations reveal that the low-energy T-R dynamics of hydrogen molecules in the large cage are qualitatively different from that inside the small cage, studied by us recently. This is caused by the following: (i) The large cage has a cavity whose diameter is about twice that of the small cage for the hydrogen molecule. (ii) In the small cage, the potential energy surface (PES) for H2 is essentially flat in the central region, while in the large cage the PES has a prominent maximum at the cage center, whose height exceeds the T-R zero-point energy of H2/D2. As a result, the guest molecule is excluded from the central part of the large cage, its wave function localized around the off-center global minimum. Peculiar quantum dynamics of the hydrogen molecule squeezed between the central maximum and the cage wall manifests in the excited T-R states whose energies and wave functions differ greatly from those for the small cage. Moreover, they are sensitive to the variations in the hydrogen-bonding topology, which modulate the corrugation of the cage wall.  相似文献   
138.
Electron paramagnetic resonance studies of the AsO4 4- centre in X-irradiated crystals of KH2AsO4 in the ferroelectric phase at 77 and 4·2 K are reported. The symmetry of the spin-hamiltonian has been found to be orthorhombic, and the g tensor and the A tensor describing the interaction of the unpaired electron with the arsenic nucleus (I = 3/2) have been obtained. Domain splitting has been observed in he spectra recorded in the ab plane of the crystal. By studying these spectra in the presence of an applied electric field, it has been possible to plot the hysteresis curve of ferroelectric KH2AsO4. Electron-nuclear double resonance (ENDOR) of protons surrounding the AsO4 4- units has been studied at 4·2 K. Two sets of ENDOR lines have been found arising from the protons in the two equilibrium positions (labelled ‘ close ’ and ‘ far ’) along the hydrogen bonds linking the AsO4 tetrahedra. The angular variation of the ENDOR lines from both ‘ close ’ and ‘ far ’ protons has been plotted in the crystal symmetry planes. The observed ENDOR frequencies have been fitted to those calculated from the numerical diagonalization of the Hamiltonian. The superhyperfine parameters for the ‘ close ’ and ‘ far ’ protons thus obtained are found to be quite anisotropic. The ENDOR results are shown to explain all details of the partially-resolved proton superhyperfine structure at room temperature as well as at low temperatures. An isotropic contact hyperfine coupling of -2·875 MHz of the unpaired electron to the proton in the ‘ far ’ position of the hydrogen bond has been determined, providing direct evidence for covalency in the hydrogen bonding in KH2AsO4 crystals.  相似文献   
139.
Upon consideration of the hydrogen-bonding properties of the NH(4)(+) cation, we synthesized a new class of compounds, M(3-x)(NH(4))(x)CrO(8) (M = Na, K, Rb, Cs). These magnetic compounds with the simple 3d(1) ground state become ferroelectric. X-ray studies confirmed that the phase transition involves a symmetry change from I42m to Cmc2(1) to P1. The transition temperature depends linearly on the composition variable x. The transitions are of the order-disorder type, with N-H···O bonding playing the central role in the mechanism. Extension of this idea to the introduction of ferroelectricity in several other classes of materials is suggested.  相似文献   
140.
Spectroscopic ellipsometry has been used to understand the properties of α,α,β-trisnaphthylbenzene (ααβ-TNB) glasses vapor-deposited at a substrate temperature of 295 K (0.85 T(g)). In a single temperature ramping experiment, a range of properties of the as-deposited glass can be measured, including density, fictive temperature, onset temperature, thermal expansion coefficient, and birefringence. The vapor-deposited ααβ-TNB glass is 1.3% more dense than the ordinary glass prepared by cooling at 1 K/min, is found to be birefringent, has a fictive temperature 35 K below that of the ordinary glass, and an onset temperature 20 K above that of the ordinary glass. The thermal expansion coefficient of the vapor-deposited ααβ-TNB glass is 14% lower than that of the ordinary glass, indicating that lower portions of the potential energy landscape have more harmonic potential minima than the parts accessible to the ordinary glass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号