首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2129篇
  免费   108篇
  国内免费   3篇
化学   1799篇
晶体学   24篇
力学   27篇
数学   77篇
物理学   313篇
  2023年   18篇
  2022年   12篇
  2021年   33篇
  2020年   53篇
  2019年   49篇
  2018年   38篇
  2017年   27篇
  2016年   48篇
  2015年   57篇
  2014年   80篇
  2013年   103篇
  2012年   171篇
  2011年   157篇
  2010年   89篇
  2009年   99篇
  2008年   184篇
  2007年   160篇
  2006年   165篇
  2005年   159篇
  2004年   131篇
  2003年   76篇
  2002年   64篇
  2001年   22篇
  2000年   26篇
  1999年   10篇
  1998年   9篇
  1997年   15篇
  1996年   12篇
  1995年   9篇
  1994年   10篇
  1993年   10篇
  1992年   10篇
  1991年   9篇
  1990年   4篇
  1989年   7篇
  1988年   5篇
  1987年   7篇
  1986年   6篇
  1985年   15篇
  1984年   11篇
  1983年   6篇
  1981年   8篇
  1980年   9篇
  1979年   3篇
  1978年   9篇
  1977年   7篇
  1976年   3篇
  1975年   3篇
  1974年   6篇
  1936年   2篇
排序方式: 共有2240条查询结果,搜索用时 218 毫秒
991.
Ways of utilizing the true separation efficiency of monolithic silica (MS) columns were studied. The true performance of MS columns, both regular-sized (rod-type clad with PEEK resin, 4.6 mm ID, 10 cm) and capillary sized (in 100 or 200 microm ID fused silica capillary, 25-140 cm) was evaluated by calculating the contribution of extra-column effects. HETP values of 7-9 microm were observed for solutes having retention factors (kvalues) of up to 4 for rod columns and up to 15 for a capillary column. The high permeability of MS columns allowed the use of long columns, with several connected together in the case of rod columns. Narrow-bore connectors gave good results. Peak variance caused by a column connector ranges from 50 to 70% of that caused by one rod-type column for up to three connectors or four columns in 80% methanol, but the addition of a 4th or 5th connector to add a 5th and 6th column, respectively, caused a much greater increase in peak variance, especially for long-retained solutes, which is greater than the variance caused by one rod column. Rod columns seem to show slightly lower efficiency at a pressure higher than 10 MPa or so. The use of acetonitrile-water as a mobile phase better preserved the ability of individual rod columns to generate up to 100,000 theoretical plates with 14 columns connected. Methods for eliminating extra-column effects in micro-HPLC were also studied. Split injection and on-column detection resulted in optimum performance. A long MS capillary measuring 140 cm produced 160,000 theoretical plates. The column efficiency of a capillary column was not affected by the pressure, showing advantages over the rod columns that exhibited peak broadening caused by connectors and pressure.  相似文献   
992.
Melt‐crystallized, low molecular weight poly(L ‐lactic acid) (PLLA) consisting of α crystals was uniaxially drawn by solid‐state extrusion at an extrusion temperature (Text) of 130–170 °C. A series of extrusion‐drawn samples were prepared at an optimum Text value of 170 °C, slightly below the melting temperature (Tm) of α crystals (~180 °C). The drawn products were characterized by deformation flow profiles, differential scanning calorimetry (DSC) melting thermograms, wide‐angle X‐ray scattering (WAXD), and small‐angle X‐ray scattering as a function of the extrusion draw ratio (EDR). The deformation mode in the solid‐state extrusion of semicrystalline PLLA was more variable and complex than that in the extensional deformation expected in tensile drawing, which generally gave a mixture of α and β crystals. The deformation profile was extensional at a low EDR and transformed to a parabolic shear pattern at a higher EDR. At a given EDR, the central portion of an extrudate showed extensional deformation and the shear component became progressively more significant, moving from the center to the surface region. The WAXD intensities of the (0010)α and (003)β reflections on the meridian as well as the DSC melting thermograms showed that the crystal transformation from the initial α form to the oriented β form proceeded rapidly with increasing EDR at an EDR greater than 4. Furthermore, WAXD showed that the crystal transformation proceeded slightly more rapidly at the sheath region than at the core region. This fact, combined with the deformation profiles (shear at the sheath and extensional at the core), indicated that the crystal transformation was promoted by shear deformation under a high pressure rather than by extensional deformation. Thus, a highly oriented rod consisting of only β crystals was obtained by solid‐state extrusion of melt‐crystallized, low molecular weight PLLA slightly below Tm. The structure and properties of the α‐ and β‐form crystals were also studied. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 95–104, 2002  相似文献   
993.
An open capsule-type octanuclear heterometallic sulfide cluster without an intramolecular inversion center [Ru(eta(6)-C(6)Me(6)){P(OMe)(3)}{MoO(mu(3)-S)(3)}(CuI)(2)](2) (5) has been synthesized for the first time by stepwise connection of three mononuclear building blocks, i.e., (i) [RuCl(2)(eta(6)-C(6)Me(6)){P(OMe)(3)}] (1a) as an octahedral terminal building block to control the direction of cluster expansion, (ii) [MoOS(3)](2)(-) as a tetrahedral polydentate building block owing to the strong coordination ability of the S atoms, and (iii) a CuI building block to form a trigonal planar (mu-S)(2)CuI unit or to form a linkage unit of two incomplete cubane-type octanuclear frameworks. The stepwise connection was made in the following order: [RuCl(2)(eta(6)-C(6)Me(6)){P(OMe)(3)}] (1a, mononuclear) --> [Ru(eta(6)-C(6)Me(6)){P(OMe)(3)}{MoOS(mu(2)-S)(2)}] (2a, dinuclear) --> [Ru(eta(6)-C(6)Me(6)){P(OMe)(3)}{MoO(mu(2)-S)(2)(mu(3)-S)}CuI] (3a, butterfly-type trinuclear) --> [Ru(eta(6)-C(6)Me(6)){P(OMe)(3)}{MoO(mu(3)-S)(3)}(CuI)(2)](2) (5). When P(OMe)(3) was replaced by P(OEt)(3), which is more bulky than P(OMe)(3), in the starting ruthenium building block [RuCl(2)(eta(6)-C(6)Me(6)){P(OEt)(3)}] (1b, mononuclear), only the tetranuclear incomplete single cubane cluster [Ru(eta(6)-C(6)Me(6)){P(OEt)(3)}{MoO(mu(3)-S)(3)}(CuI)(2)] (6) was generated, owing to the steric effect of P(OEt)(3).  相似文献   
994.
Four-component coupling process involving two acetylenes, a nitrile, and a divalent titanium alkoxide reagent, Ti(O-i-Pr)(4)/2i-PrMgCl, directly yielded titanated pyridines in a highly selective manner. The reaction can be classified into four categories: (i) a combination of an internal acetylene, a terminal acetylene, sulfonylnitrile, and the titanium reagent to yield alpha-titanated pyridines, (ii) a combination of an internal acetylene, a (sulfonylamino)acetylene, a nitrile, and the titanium reagent to yield alternative alpha-titanated pyridines, (iii) a combination of an internal acetylene, a (sulfonylamino)acetylene, a nitrile, and the titanium reagent to yield titanated aminopyridines, and (iv) a combination of an acetylenic amide, a terminal acetylene, a nitrile, and the titanium reagent to yield pyridineamides with their side chain titanated. Some of these reactions enabled virtually completely regioselective coupling of two different, unsymmetrical acetylenes and a nitrile to form a single pyridine. Synthetic applications of these reactions have been illustrated in the preparation of optically active pyridines and medicinally useful compounds.  相似文献   
995.
Five-coordinated trithiotungsten complexes (PPh(4))[(dmsp)W(S)(3)] (1a) and (PPh(4))[(dpsp)W(S)(3)] (1b) (R(2)PCH(2)CH(2)S(-); R = Me (dmsp-)), Ph (dpsp-))) were synthesized by addition of Hdmsp and Hdpsp to a THF solution of (PPh(4))[(EtS)W(S)(3)]. Treatment of 1a with CuBr in the presence of PPh(3) in CH(3)CN afforded a WCu(2) cluster (dmsp)WS(3)Cu(2)(PPh(3))(2)Br (2). The reaction of 1a with 1 equiv of FeCl(2) went smoothly to generate a 1:1 adduct (PPh(4))[(dmsp)WS(3)(FeCl(2))] (3), while 3 did not react further with excess FeCl(2). On the other hand, 3 was found to react with [Fe(CH(3)CN)(6)](ClO(4))(2), giving rise to an unusual tetranuclear cluster, [(dmsp)WS(3)](2)Fe(2)Cl (4), while the reaction of 1a with 2 equiv of [Fe(CH(3)CN)(6)](ClO(4))(2) led to a cyclic octanuclear cluster [(dmsp)WS(3)Fe](4) (5). Although the oxidation states of W(VI), Cu(I), and Fe(II) are retained in 2 and 3, reduction of the metal ions occurs in the formation of 4 and 5. All the complexes reported in this paper were structurally characterized by X-ray analysis. It is anticipated that the new type of trithiotungsten complexes, 1a and 1b, will serve as potential synthons for various heterometallic sulfide clusters.  相似文献   
996.
[chemical reaction: see text]. A solid phase approach is presented for the synthesis of azapeptide inhibitors and activity based probes (ABPs) for cysteine proteases. This synthetic method allows the incorporation of diverse reactive warheads linked to different peptide recognition elements. Application of this method to the synthesis of a series of caspase probes is described.  相似文献   
997.
A series of group 6 transition metal half-sandwich complexes with 1,1-dichalcogenide ligands have been prepared by the reactions of Cp*MCl(4)(Cp* = eta(5)-C(5)Me(5); M = Mo, W) with the potassium salt of 2,2-dicyanoethylene-1,1-dithiolate, (KS)(2)C=C(CN)(2) (K(2)-i-mnt), or the analogous seleno compound, (KSe)(2)C=C(CN)(2) (K(2)-i-mns). The reaction of Cp*MCl(4) with (KS)(2)C=C(CN)(2) in a 1:3 molar ratio in CH(3)CN gave rise to K[Cp*M(S(2)C=C(CN)(2))(2)] (M = Mo, 1a, 74%; M = W, 2a, 46%). Under the same conditions, the reaction of Cp*MoCl(4) with 3 equiv of (KSe)(2)C=C(CN)(2) afforded K[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3a) and K[Cp*Mo(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))] (4) in respective yields of 45% and 25%. Cation exchange reactions of 1a, 2a, and 3a with Et(4)NBr resulted in isolation of (Et(4)N)[Cp*Mo(S(2)C=C(CN)(2))(2)] (1b), (Et(4)N)[Cp*W(S(2)C=C(CN)(2))(2)] (2b), and (Et(4)N)[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3b), respectively. Complex 4 crystallized with one THF and one CH(3)CN molecule as a three-dimensional network structure. Inspection of the reaction of Cp*WCl(4) with (KSe)(2)C=C(CN)(2) by ESI-MS revealed the existence of three species in CH(3)CN, [Cp*W(Se(2)C=C(CN)(2))(2)]-, [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-, and [Cp*W(Se(Se(2))C=C(CN)(2))(2)]-, of which [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-(5) was isolated as the main product. Treatment of 2a with 1/4 equiv of S(8) in refluxing THF resulted in sulfur insertion and gave rise to K[Cp*W(S(2)C=C(CN)(2))(S(S(2))C=C(CN)(2))](6), which crystallized with two THF molecules forming a three-dimensional network structure. 6 can also be prepared by refluxing 2a with 1/4 equiv of S(8) in THF. 3a readily added one Se atom upon treatment with 1 mol of Se powder in THF to give 4 in high yield, while the treatment of 3a or 4 with 2 equiv of Na(2)Se in THF led to formation of a dinuclear complex [(Cp*Mo)(2)(mu-Se)(mu-Se(Se(3))C=C(CN)(2))] (7). The structure of 7 consists of two Cp*Mo units bridged by a Se(2-) and a [Se(Se(3))C=C(CN)(2)](2-) ligand in which the triselenido group is arranged in a nearly linear way (163 degrees). The reaction of 2a with 2 equiv of CuBr in CH(3)CN yielded a trinuclear complex [Cp*WCu(2)(mu-Br)(mu(3)-S(2)C=C(CN)(2))(2)] (8), which crystallized with one CH(3)CN and generated a one-dimensional chain polymer through bonding of Cu to the N of the cyano groups.  相似文献   
998.
Co2(CO)8 catalyzes the ring‐opening copolymerization of propylene oxide with CO to afford the polyester in the presence of various amine cocatalysts. The 1H and 13C{1H} NMR spectra of the polyester, obtained by the Co2(CO)8–3‐hydroxypyridine catalyst, show the following structure ? [CH2? CH(CH3)? O? CO]n? . The Co2(CO)8–phenol catalyst gives the polyester, which contains the partial structural unit formed through the ring‐opening copolymerization of tetrahydrofuran with CO. The bidentate amines, such as bipyridine and N,N,N′,N′‐tetramethylethylenediamine, enhance the Co complex‐catalyzed copolymerization, which produces the polyester with a regulated structure. Acylcobalt complexes, (RCO)Co(CO)n (R = Me or CH2Ph), prepared in situ, do not catalyze the copolymerization even in the presence of pyridine. This suggests that the chain growth involves the intermolecular nucleophilic addition of the OH group of the intermediate complex to the acyl–cobalt bond, forming an ester bond rather than the insertion of propylene oxide into the acyl–cobalt bond. Co2(CO)8? Ru3(CO)12 mixtures also bring about the copolymerization of propylene oxide with CO. The molar ratio of Ru to Co affects the yield, molecular weight, and structure of the produced copolymer. The catalysis is ascribed to the Ru? Co mixed‐metal cluster formed in the reaction mixture. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4530–4537, 2002  相似文献   
999.
The coordination chemistry of chelating silanedithiolato ligands has been investigated on Fe(II), Co(II), Pd(II), Cu(I), and Ag(I). Treatment of M(OAc)(2) (M = Fe, Co, Pd) with cyclotrisilathiane (SSiMe(2))(3) in the presence of Lewis bases resulted in formation of Fe(S(2)SiMe(2))(PMDETA) (1), Fe(S(2)SiMe(2))(Me(3)TACN) (2), Co(S(2)SiMe(2))(PMDETA) (3), and Pd(S(2)SiMe(2))(PEt(3))(2) (4) (PMDETA = N,N,N',N',N' '-pentamethyldiethylenetriamine; Me(3)TACN = 1,4,7-trimethyl-1,4,7-triazacyclononane). The analogous reactions of M(OAc) (M = Cu, Ag) in the presence of PEt(3) gave rise to the dinuclear complexes M(2)[(SSiMe(2))(2)S](PEt(3))(3) [M = Cu (5), Ag (6)]. Complexes were characterized in solution by (1)H, (31)P[(1)H], and (29)Si[(1)H] NMR and in the solid state by single-crystal X-ray diffraction. Mononuclear complexes 1-3 have a four-membered MS(2)Si ring, and these five-coordinate complexes adopt trigonal-bipyramidal (for the PMDETA adducts) or square-pyramidal (for the Me(3)TACN adduct) geometries. In dimer 6, the (SSiMe(2))(2)S(2)(-) silanedithiolato ligand bridges two metal centers, one of which is three-coordinate and the other four-coordinate. The chelating effect of silanedithiolato ligands leads to an increase in the stability of silylated thiolato complexes.  相似文献   
1000.
By electrospray ionization (ESI) mass spectrometry, micelle solutions of sodium cholate were investigated in detail in the presence and absence of ethanol. The average aggregation number could be evaluated from the spectra acquired under conditions where soft collisions adequate to measure the micelle solution were induced, and the value agreed well with that obtained previously by other methods. From the dependence on ethanol content, it was also found that the average aggregation number in aqueous solution without organic solvent could be reliably estimated. The ESI method proved to be a useful tool for determining the micelle mass in the original aqueous phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号