首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1307篇
  免费   29篇
  国内免费   5篇
化学   924篇
晶体学   15篇
力学   42篇
数学   189篇
物理学   171篇
  2023年   9篇
  2022年   32篇
  2021年   27篇
  2020年   26篇
  2019年   30篇
  2018年   34篇
  2017年   23篇
  2016年   40篇
  2015年   32篇
  2014年   53篇
  2013年   95篇
  2012年   89篇
  2011年   102篇
  2010年   69篇
  2009年   50篇
  2008年   79篇
  2007年   56篇
  2006年   61篇
  2005年   60篇
  2004年   45篇
  2003年   35篇
  2002年   42篇
  2001年   23篇
  2000年   26篇
  1999年   15篇
  1998年   10篇
  1997年   15篇
  1996年   17篇
  1995年   11篇
  1994年   8篇
  1993年   8篇
  1992年   5篇
  1991年   7篇
  1990年   8篇
  1989年   6篇
  1987年   6篇
  1986年   7篇
  1985年   3篇
  1984年   4篇
  1983年   6篇
  1982年   5篇
  1981年   10篇
  1980年   7篇
  1979年   4篇
  1978年   7篇
  1977年   3篇
  1976年   5篇
  1975年   7篇
  1974年   7篇
  1971年   3篇
排序方式: 共有1341条查询结果,搜索用时 0 毫秒
41.
42.
Monolayers of periodic porous Co3O4 inverse opal (IO) thin films for gas‐sensor applications were prepared by transferring cobalt‐solution‐dipped polystyrene (PS) monolayers onto sensor substrates and subsequent removal of the PS template by heat treatment. Monolayer Co3O4 IO thin films having periodic pores (d≈500 nm) showed a high response of 112.9 to 5 ppm C2H5OH at 200 °C with low cross‐responses to other interfering gases. Moreover, the selective detection of xylene and methyl benzenes (xylene+toluene) could be achieved simply by tuning the sensor temperature to 250 and 275 °C, respectively, so that multiple gases can be detected with a single chemiresistor. Unprecedentedly high ethanol response and temperature‐modulated control of selectivity with respect to ethanol, xylene, and methyl benzenes were attributed to the highly chemiresistive IO nanoarchitecture and to the tuned catalytic promotion of different gas‐sensing reactions, respectively. These well‐ordered porous nanostructures could have potential in the field of high‐performance gas sensors based on p‐type oxide semiconductors.  相似文献   
43.
44.
Hibaone has been synthesized from manool through a photochemical cycloaddition of Δ8(14) podocarpene-13-one to ethylene or 1,2 dichloroethylene.  相似文献   
45.
To investigate the effects of the phase state (ordered or disordered) of self-assembled monolayers (SAMs) on the growth mode of pentacene films and the performance of organic thin-film transistors (OTFTs), we deposited pentacene molecules on SAMs of octadecyltrichlorosilane (ODTS) with different alkyl-chain orientations at various substrate temperatures (30, 60, and 90 degrees C). We found that the SAM phase state played an important role in both cases. Pentacene films grown on relatively highly ordered SAMs were found to have a higher crystallinity and a better interconnectivity between the pentacene domains, which directly serves to enhance the field-effect mobility, than those grown on disordered SAMs. Furthermore, the differences in crystallinity and field-effect mobility between pentacene films grown on ordered and disordered substrates increased with increasing substrate temperature. These results can be possibly explained by (1) a quasi-epitaxy growth of the pentacene film on the ordered ODTS monolayer and (2) the temperature-dependent alkyl chain mobility of the ODTS monolayers.  相似文献   
46.
Nitrogen adsorption on a surface of a non-porous reference material is widely used in the characterization. Traditionally, the enhancement of solid-fluid potential in a porous solid is accounted for by incorporating the surface curvature into the solid-fluid potential of the flat reference surface. However, this calculation procedure has not been justified experimentally. In this paper, we derive the solid-fluid potential of mesoporous MCM-41 solid by using solely the adsorption isotherm of that solid. This solid-fluid potential is then compared with that of the non-porous reference surface. In derivation of the solid-fluid potential for both reference surface and mesoporous MCM-41 silica (diameter ranging from 3 to 6.5 nm) we employ the nonlocal density functional theory developed for amorphous solids. It is found that, to our surprise, the solid-fluid potential of a porous solid is practically the same as that for the reference surface, indicating that there is no enhancement due to surface curvature. This requires further investigations to explain this unusual departure from our conventional wisdom of curvature-induced enhancement. Accepting the curvature-independent solid-fluid potential derived from the non-porous reference surface, we analyze the hysteresis features of a series of MCM-41 samples.  相似文献   
47.
Self-assembled monolayers (SAMs) of octanethiol and benzeneethanethiol were deposited on clean Pt(111) surfaces in ultrahigh vacuum (UHV). Highly resolved images of these SAMs produced by an in situ scanning tunneling microscope (STM) showed that both systems organize into a super-structure mosaic of domains of locally ordered, closely packed molecules. Analysis of the STM images indicated a (square root 3 x square root 3)R30 degrees unit cell for the octanethiol SAMs and a 4(square root 3 x square root 3)R30 degrees periodicity based on 2 x 2 basic molecular packing for the benzeneethanethiol SAMs under the coverage conditions investigated. SAMs on Pt(111) exhibited differences in molecular packing and a lower density of disordered regions than SAMs on Au(111). Electron transport measurements were performed using scanning tunneling spectroscopy. Benzeneethanethiol/Pt(111) junctions exhibited a higher conductance than octanethiol/Pt(111) junctions.  相似文献   
48.
The adsorption of thiophene on Ge(100) has been studied using scanning tunneling microscopy (STM), high-resolution core-level photoemission spectroscopy (HRPES), and density functional theory (DFT) calculations. Until now, thiophene is known to react with the Ge(100) dimer through a [4 + 2] cycloaddition reaction at room temperature, similar to the case of thiophene on Si(100). However, we found that thiophene has two adsorption geometries on Ge(100) at room temperature, such as a kinetically favorable Ge-S dative bonding configuration and a thermodynamically stable [4 + 2] cycloaddition adduct. Moreover, our STM results show that under 0.25 ML thiophene molecules preferentially produce one-dimensional molecular chain structures on Ge(100) via the Ge-S dative bonding configuration.  相似文献   
49.
Somer G  Sezer S  Doğan M  Kalaycı S  Sendil O 《Talanta》2011,85(3):1461-1465
A new borate ion selective electrode using solid salts of Ag3BO3, Ag2S and Cu2S has been developed. Detailed information is provided concerning the composition, working pH and conditioning of the electrode. An analytically useful potential change occurred from 1 × 10−6 to 1 × 10−1 M borate ion. The slope of the linear portion was 31 ± 2 mV/10-fold changes in borate concentration. The measurements were made at constant ionic strength (0.1 M NaNO3) and at room temperature. The effect of Cl, Br, NO3, SO=4, H2PO4 anions and K+, Na+, Cu2+, Ag+, Ca2+ cations on borate response is evaluated and it was found that only Ag+ had a small interference effect. The lifetime of the electrode was more than two years, when used at least 4-5 times a day, and the response time was about 20-30 s. Borate content in waste water of borax factory, tap water of a town situated near to the borax factory and city tap water far from these mines were also determined. The validation was made with differential pulse polarography for the same water sample, and high consistency was obtained.  相似文献   
50.
ZnO thin films were deposited onto glass subsrates by a Sol-gel spin coating method. The structural and optical properties of ZnO thin films were investigated. The molar ratios of the zinc acetate dihydrate to Monoethanolamine were maintained 1:1. The as-grown film was sintered 250 °C for 10 min, then annealed in air at 500 °C for 30 min. The XRD results indicate that ZnO films were strongly oriented to the c-axis of the hexagonal nature. Absorption measurements were carried out as a function of temperature with 10 K steps in the range 10–320 K. The band gap energy was measured 3.275 and 3.267 eV for 0.5 and 1.0 molarity (M) ZnO thin films at 300 K. The steepness parameters were observed between 10 and 320 K and their extrapolations converged at (E0, α0) = 3.65 eV, 172,819 cm−1 and 3.70 eV, 653,436 cm−1 for 0.5 and 1.0 M ZnO thin films, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号