首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   2篇
化学   51篇
晶体学   1篇
力学   12篇
数学   14篇
物理学   31篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   1篇
  2013年   8篇
  2012年   8篇
  2011年   12篇
  2010年   7篇
  2009年   12篇
  2008年   4篇
  2007年   7篇
  2006年   7篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2001年   1篇
  1998年   1篇
  1995年   2篇
  1992年   2篇
  1991年   3篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1975年   1篇
  1968年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
81.
Generation of sub-20-fs UV pulses with more than 300 μJ energy at 268 nm is reported. First, the UV pulses are produced by successive second-harmonic and third-harmonic (TH) generation of 805 nm pulses of a 1 kHz Ti:sapphire laser amplifier. The spectral broadening of TH pulses is realized in a filament, generated in argon. The produced pulses are compressed in a simple double-pass prism-pair compressor. Starting from 100 fs pulses, we achieve a fivefold pulse shortening.  相似文献   
82.
A series of brucite-like materials, undoped and doped zinc layered hydroxide nitrate with 2% (molar) Fe3+, Co2+ and Ni2+ were synthesized. Organic–inorganic nanohybrid material with gallate anion as a guest, and zinc hydroxide nitrate, as an inorganic layered host was prepared by the ion-exchange method. The nanohybrid materials were heat-treated at various temperatures, 400–700 °C. X-ray diffraction, thermal analysis and also Fourier transform infrared results showed that incorporation of the doping agents within the zinc layered hydroxide salt layers has enhanced the heat-resistivity of the nanohybrid materials in the thermal decomposition pathway. Porous carbon materials can be obtained from the heat-treating the nanohybrids at 600 and 700 °C. Calcination of the nanohybrids at 700 °C under nitrogen atmosphere produces mesoporous and high pore volume carbon materials.  相似文献   
83.
Zinc hydroxide nitrate, a brucite-like layered material was synthesized using pH control method. Poly(vinyl alcohol) and poly(ethylene glycol) were used at various percentages as size decreasing agents during the synthesis of zinc hydroxide nitrate. SEM and PXRD showed the decrease of size and thickness of the resultant zinc hydroxide nitrates. TG and surface area data confirmed the decrease of the particle sizes, too. When zinc hydroxide nitrates were heat treated at 500 °C, the physical properties of nano zinc oxides obtained depended on the parent material, zinc hydroxide nitrate.  相似文献   
84.
A magic square is a square matrix whereby the sum of any row, column, or any one of the two principal diagonals is equal. A surrogate of this abstract mathematical construct, introduced in 2012 by Fahimi and Jaleh, is the “electrostatic potential (ESP)” that results from treating the matrix elements of the magic square as electric charges. The overarching idea is to characterize patterns associated with these matrices that can possibly be used, in the future, in reverse to generate these squares. This study focuses on squares of order 4 and 5 with 880 and 275,305,224 distinct (irreducible/unique) realizations, respectively. It is shown that characteristic patterns emerge from plots of the ESPs of the matrices representing the studied squares. The electrostatic potentials for natural magic squares exhibit a striking pattern of maxima and minima in all distinct 880 of the 4th order and all distinct 275,305,224 of the 5th order matrices. The minimum values of ESP of Dudeney groups are discussed. Equipotential points and certain constants are found among the ESP sums along horizontal and vertical lines on the square lattice. These findings may help to open a new perspective regarding magic squares unsolved problems. While mathematics often leads discovery in physics, the latter (physics) is used here to detect otherwise invisible patterns in a mathematical object such as magic squares.  相似文献   
85.
86.
    
Macrocyclic peptides are predominantly peptide structures bearing one or more rings and spanning multiple amino acid residues. Macrocyclization has become a common approach for improving the pharmacological properties and bioactivity of peptides. A variety of ribosomal-derived and non-ribosomal synthesized cyclization approaches have been established. The biosynthesis of backbone macrocyclic peptides using seven new emerging methodologies will be discussed with regard to the features and strengths of each platform rather than medicinal chemistry tools. The mRNA display variant, known as the random nonstandard peptide integrated discovery (RaPID) platform, utilizes flexible in vitro translation (FIT) to access macrocyclic peptides containing nonproteinogenic amino acids (NAAs). As a new discovery approach, the ribosomally synthesized and post-translationally modified peptides (RiPPs) method involves the combination of ribosomal synthesis and the phage screening platform together with macrocyclization chemistries to generate libraries of macrocyclic peptides. Meanwhile, the split-intein circular ligation of peptides and proteins (SICLOPPS) approach relies on the in vivo production of macrocyclic peptides. In vitro and in vivo peptide library screening is discussed as an advanced strategy for cyclic peptide selection. Specifically, biosynthetic bicyclic peptides are highlighted as versatile and attractive modalities. Bicyclic peptides represent another type of promising therapeutics that allow for building blocks with a heterotrimeric conjugate to address intractable challenges and enable multimer complexes via linkers. Additionally, we discuss the cell-free chemoenzymatic synthesis of macrocyclic peptides with a non-ribosomal catalase known as the non-ribosomal synthetase (NRPS) and chemo-enzymatic approach, with recombinant thioesterase (TE) domains. Novel insights into the use of peptide library tools, activity-based two-hybrid screening, structure diversification, inclusion of NAAs, combinatorial libraries, expanding the toolbox for macrocyclic peptides, bicyclic peptides, chemoenzymatic strategies, and future perspectives are presented. This review highlights the broad spectrum of strategy classes, novel platforms, structure diversity, chemical space, and functionalities of macrocyclic peptides enabled by emerging biosynthetic platforms to achieve bioactivity and for therapeutic purposes.  相似文献   
87.
    
The conversion of proteins between internal and cartesian coordinates is a limiting step in many pipelines, such as molecular dynamics simulations and machine learning models. This conversion is typically carried out by sequential or parallel applications of the Natural extension of Reference Frame (NeRF) algorithm. This work proposes a massively parallel NeRF implementation which, depending on the polymer length, achieves speedups between 400 and 1200× over the previous state-of-the-art. It accomplishes this by dividing the conversion into three main phases: parallel composition of the monomer backbone, assembly of backbone subunits, and parallel elongation of sidechains; and by batching these computations into a minimal number of efficient matrix operations. Special emphasis is placed on reusability and ease of use. We open source the code (available at https://github.com/EleutherAI/mp_nerf ) and provide a corresponding python package.  相似文献   
88.
A model based on the perturbation theory of fluids was proposed to correlate the experimental data for surface tension of pure hydrocarbons in a wide range of temperature. The results obtained for the pure hydrocarbons were directly used to predict the surface tension for binary hydrocarbon mixtures at various temperatures. In the proposed model, a modified form of the square well potential energy between the molecules of the reference fluid was taken into account while the Lennard–Jones dispersion energy was considered to be dominant amongst the molecules as the perturbed term to the reference part of the model. In general, the proposed model has three adjustable parameters which are chain length, m, size, σ, and energy, ε/κ, parameters, but in some cases the number of parameters was reduced to two, thereby setting the chain length to be unity for pure hydrocarbons. The regressed values of these parameters were obtained using the experimental data for pure hydrocarbons at different temperatures. The results showed that these parameters can be related to the molar mass of hydrocarbons. The model was also extended to predict the surface tension of binary hydrocarbon mixtures using the parameters obtained for the pure compounds. It is worth noting that no additional parameter has been introduced into the model in the extension of the model to the mixtures studied in this work. The results showed that the proposed model can accurately correlate the surface tension of pure hydrocarbons. Also the results showed that the surface tension for binary mixture of hydrocarbons can be accurately predicted using the proposed model over a wide temperature range.  相似文献   
89.
Metabolite identification study plays an important role in determining the sites of metabolic liability of new chemical entities (NCEs) in drug discovery for lead optimization. Here we compare the two predictive software, MetaSite and StarDrop, available for this purpose. They work very differently but are used to predict the site of oxidation by major human cytochrome P450 (CYP) isoforms. Neither software can predict non-CYP catalyzed metabolism nor the rates of metabolism. For the purpose of comparing the two software packages, we tested known probe substrate for these enzymes, which included 12 substrates of CYP3A4 and 18 substrates of CYP2C9 and CYP2D6 were analyzed by each software and the results were compared. It is possible that these known substrates were part of the training set but we are not aware of it. To assess the performance of each software we assigned a point system for each correct prediction. The total points assigned for each CYP isoform experimentally were compared as a percentage of the total points assigned theoretically for the first choice prediction for all substrates for each isoform. Our results show that MetaSite and StarDrop are similar in predicting the correct site of metabolism by CYP3A4 (78% vs 83%, respectively). StarDrop appears to do slightly better in predicting the correct site of metabolism by CYP2C9 and CYP2D6 metabolism (89% and 93%, respectively) compared to MetaSite (63% and 70%, respectively). The sites of metabolism (SOM) from 34 in-house NCEs incubated in human liver microsomes or human hepatocytes were also evaluated using two prediction software packages and the results showed comparable SOM predictions. What makes this comparison challenging is that the contribution of each isoform to the intrinsic clearance (Clint) is not known. Overall the software were comparable except for MetaSite performing better for CYP2D6 and that MetaSite has a liver model that is absent in StarDrop that predicted with 82% accuracy.  相似文献   
90.
The networklike structure of actin bundles formed with the cross-linking protein alpha-actinin has been investigated via x-ray scattering and confocal fluorescence microscopy over a wide range of alpha-actinin/F-actin ratios. We describe the hierarchical structure of bundle gels formed at high ratios. Isotropic actin bundle gels form via cluster-cluster aggregation in the diffusion-limited aggregation regime at high alpha-actinin/actin ratios. This process is clearly observed by confocal fluorescence microscopy. Polylysine is investigated as an alternative bundling agent in the high-ratio regime and the effects of F-actin length are also discussed. One particularly fascinating aspect of this system is the presence of a structured skin layer at the gel/water interface. Confocal microscopy has elucidated the full three-dimensional structure of this layer and revealed several interesting morphologies. The protein skin layer is a micron-scale structure composed of a directed network of bundles and exhibits flat, crumpled, and tubelike shapes. We show that crumpling of the skin layer results from stresses due to the underlying gel. These biologically based geometric structures may detach from the gel, demonstrating potential for the generation of biological scaffolds with defined shapes for applications in cell encapsulation and tissue engineering. We demonstrate manipulation of the skin layer, producing hemispherical structures in solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号