首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   3篇
  国内免费   4篇
化学   34篇
物理学   2篇
  2023年   1篇
  2019年   2篇
  2016年   2篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2007年   5篇
  2006年   1篇
  2005年   5篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
31.
Density functional theory calculations for the cyclopropanation reactions of several mono zinc carbenoids and their corresponding gem-dizinc carbenoids with ethylene are reported. The mono zinc carbenoids react with ethylene via an asynchronous attack on one CH2 group of ethylene with a relatively high barrier to reaction in the 20-25 kcal/mol range similar to other Simmons-Smith type carbenoids previously studied. In contrast, the gem-dizinc carbenoids react with ethylene via a synchronous attack on both CH2 groups of ethylene and substantially lower barriers to reaction (about 15 kcal/mol) compared to their corresponding mono zinc carbenoid. Both mono zinc and gem-dizinc carbenoid reactions can be accelerated by the addition of ZnI2 groups as a Lewis acid, and this lowers the barrier by another 1.0-5.1 kcal/mol and 0.0-5.5 kcal/mol, respectively, for addition of one ZnI2 group. Our results indicate that gem-dizinc carbenoids react with C=C bonds with significantly lower barriers to reaction and in a noticeably different manner than Simmons-Smith type mono zinc carbenoids. The three gem-dizinc carbenoids have a substantially larger positive charge distribution than those in the mono zinc carbenoids and, hence, a stronger electrophilic character for the gem-dizinc carbenoids.  相似文献   
32.
A combined experimental and theoretical study of the photochemistry of CHBr(3) in pure water and in acetonitrile/water mixed solvents is reported that elucidates the reactions and mechanisms responsible for the photochemical conversion of the halogen atoms in CHBr(3) into three bromide ions in water solution. Ultraviolet excitation at 240 nm of CHBr(3) (9 x 10(-)(5) M) in water resulted in almost complete conversion into 3HBr leaving groups and CO (major product) and HCOOH (minor product) molecules. Picosecond time-resolved resonance Raman (ps-TR(3)) experiments and ab initio calculations indicate that the water-catalyzed O-H insertion/HBr elimination reaction of isobromoform and subsequent reactions of its products are responsible for the production of the final products observed following ultraviolet excitation of CHBr(3) in water. These results have important implications for the phase-dependent behavior of polyhalomethane photochemistry and chemistry in water-solvated environments as compared to gas-phase reactions. The dissociation reaction of HBr into H(+) and Br(-) ions is the driving force for several O-H insertion and HBr elimination reactions and allows O-H and C-H bonds to be cleaved more easily than in the absence of water molecules. This water-catalysis by solvation of a leaving group and its dissociation into ions (e.g., H(+) and Br(-) in the examples investigated here) may occur for a wide range of chemical reactions taking place in water-solvated environments.  相似文献   
33.
Picosecond time-resolved resonance Raman (ps-TR3) spectroscopy was used to obtain the first definitive spectroscopic observation of an isopolyhalomethane O-H insertion reaction with water. The ps-TR3 spectra show that isobromoform is produced within several picoseconds after photolysis of CHBr3 and then reacts on the hundreds of picosecond time scale with water to produce a CHBr2OH reaction product. Photolysis of low concentrations of bromoform in aqueous solution resulted in noticeable formation of HBr strong acid. Ab initio calculations show that isobromoform can react with water to produce a CHBr2(OH) O-H insertion reaction product and a HBr leaving group. This is consistent with both the ps-TR3 experiments that observe the reaction of isobromoform with water to form a CHBr2(OH) product and photolysis experiments that show HBr acid formation. We briefly discuss the implications of these results for the phase dependent behavior of polyhalomethane photochemistry in the gas phase versus water solvated environments.  相似文献   
34.
Density functional theory calculations for the lithium carbenoid-promoted cyclopropanations in aggregation and solvation states are presented in order to investigate the controversy of the mechanistic dichotomy, that is, the methylene-transfer mechanism and the carbometalation mechanism. The methylene-transfer mechanism represents the reaction reality, whereas the carbometalation pathway does not appear to compete significantly with the methylene-transfer pathway and should be ruled out as a major factor. A simple model calculation for monomeric lithium carbenoid-promoted cyclopropanations with ethylene in the gas phase is not sufficient to reflect the reaction conditions accurately or to determine the reaction mechanism since its result is inconsistent with the experimental facts. The aggregated lithium carbenoids are the most probable reactive species in the reaction system. The calculated reaction barriers of the methylene-transfer pathways are 10.1 and 8.0 kcal/mol for the dimeric (LiCH2F)2 and tetrameric (LiCH2F)4 species, respectively, compared with the reaction barrier of 16.0 kcal/mol for the monomeric LiCH2F species. In contrast, the reaction barriers of the carbometalation pathways are 26.8 kcal/mol for the dimeric (LiCH2F)2 and 33.9 kcal/mol for the tetrameric (LiCH2F)4 species, compared with the reaction barrier of 12.5 kcal/mol for the monomeric LiCH2F species. The effects of solvation were investigated by explicit coordination of the solvent molecules to the lithium centers. This solvation effect is found to enhance the methylene-transfer pathway, while it is found to impede the carbometalation pathway instead. The combined effects of the aggregation and solvation lead to barriers to reaction in the range of 7.2-9.0 kcal/mol for lithium carbenoid-promoted cyclopropanation reactions along the methylene-transfer pathway. Our computational results are in good agreement with the experimental observations.  相似文献   
35.
A surprisingly low pK(a) (4.3) for a Cu(II) bridging water was found in the presented complex, Cu(2)L, resulting in 3 orders of magnitude higher phosphodiesterase activity on BNPP than Zn(2)L at typical lysosomal pH (~5.0).  相似文献   
36.
Electrochemiluminescence (ECL) represents a widely explored technique to generate light, in which the emission intensity relies critically on the charge-transfer reactions between electrogenerated radicals. Two types of charge-transfer mechanisms have been postulated for ECL generation, but the manipulation and effective probing of these routes remain a fundamental challenge. Here, we demonstrate the design of quantum dot (QD) aerogels as novel ECL luminophores via a versatile water-induced gelation strategy. The strong electronic coupling between adjacent QDs enables efficient charge transport within the aerogel network, leading to the generation of highly efficient ECL based on the selectively improved interparticle charge-transfer route. This mechanism is further verified by designing CdSe-CdTe mixed QD aerogels, where the two mechanistic routes are clearly decoupled for ECL generation. We anticipate our work will advance the fundamental understanding of ECL and prove useful for designing next-generation QD-based devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号