首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   3篇
  国内免费   2篇
化学   133篇
力学   6篇
数学   8篇
物理学   30篇
  2022年   1篇
  2021年   3篇
  2018年   2篇
  2017年   2篇
  2015年   6篇
  2013年   6篇
  2012年   8篇
  2011年   13篇
  2010年   7篇
  2009年   3篇
  2008年   15篇
  2007年   9篇
  2006年   8篇
  2005年   11篇
  2004年   7篇
  2003年   9篇
  2002年   8篇
  2001年   6篇
  2000年   4篇
  1999年   1篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1943年   2篇
  1934年   1篇
排序方式: 共有177条查询结果,搜索用时 46 毫秒
71.
A multistep synthetic strategy enables the isolation of the niobaziridine-hydride complex Nb(H)(eta2-tBu(H)C=NAr)(N[Np]Ar)2 (1, Np = neopentyl, Ar = 3,5-C6H3Me2), which functions as a reactive synthon for its tautomer, the three-coordinate, trisamide species Nb(N[Np]Ar)3 (2). Treatment of 1 with various small molecules has demonstrated its capacity to effect two-electron reduction chemistry. Most noteworthy is the reaction between 1 and elemental phosphorus (P4), providing in high yield the bridging diphosphide complex (mu2:eta2,eta2-P2)[Nb(N[Np]Ar)3]2. However, unsaturated organic functionality including nitriles and aldehydes can insert into the Nb-H bond of 1, leaving the niobaziridine ring intact, thus demonstrating that dual pathways of reactivity are available to the niobaziridine-hydride functional group.  相似文献   
72.
Treatment of IU(DME)(NC[(t)Bu]Mes)(3) (2-I-DME) with 4 equiv of KC(8) and 0.5 equiv of naphthalene in DME allowed the isolation of a naphthalene-bridged compound, K(2)(mu-eta(6),eta(6)-C(10)H(8))[U(NC[(t)Bu]Mes)(3)](2) (K(2)-2(2)-mu-C(10)H(8)), in 60% yield as a dark brown powder. The twelve U-C distances are rather short, varying from 2.565(11) to 2.749(10) A. Treatment of M(2)-2(2)-mu-C(10)H(8) (M = Na, K) with 2 equiv of 1,3,5,7-cyclooctatetraene afforded a mixture of two products: M-2-COT and 2(2)-mu-COT. Compound 2(2)-mu-COT can be assembled independently in 90% yield by salt elimination upon reaction of M-2-COT with iodide 2-I-DME. The U-C(arene) distance in compound 2(2)-mu-COT is longer than that in its naphthalene counterpart K(2)-2(2)-mu-C(10)H(8)(2.822 vs 2.634 A), in accord with bonding considerations. A DFT study performed on model compounds for both M(2)-2(2)-mu-C(10)H(8) and 2(2)-mu-COT indicates that the delta bonds present in the former compound show better covalent overlap.  相似文献   
73.
The kinetics of the oxidative addition of PhSeSePh and PhTeTePh to the stable 17-electron complex *Cr(CO)3C5Me5 have been studied utilizing stopped-flow techniques. The rates of reaction are first-order in each reactant, and the enthalpy of activation decreases in going from Se (deltaH(double dagger) = 7.0 +/- 0.5 kcal/mol, deltaS(double dagger) = -22 +/- 3 eu) to Te (deltaH(double dagger) = 4.0 +/- 0.5 kcal/mol, deltaS(double dagger) = -26 +/- 3 eu). The kinetics of the oxidative addition of PhSeH and *Cr(CO)3C5Me5 show a change in mechanism in going from low (overall third-order) to high (overall second-order) temperatures. The enthalpies of the oxidative addition of PhE-EPh to *Cr(CO)3C5Me5 in toluene solution have been measured and found to be -29.6, -30.8, and -28.9 kcal/mol for S, Se, and Te, respectively. These data are combined with enthalpies of activation from kinetic studies to yield estimates for the solution-phase PhE-EPh bond strengths of 46, 41, and 33 kcal/mol for E = S, Se, and Te, respectively. The corresponding Cr-EPh bond strengths are 38, 36, and 31 kcal/mol. Two methods have been used to determine the enthalpy of hydrogenation of PhSeSePh in toluene on the basis of reactions of HSPh and HSePh with either *Cr(CO)3C5Me5 or 2-pyridine thione. These data lead to a thermochemical estimate of 72 kcal/mol for the PhSe-H bond strength in toluene solution, which is in good agreement with kinetic studies of H atom transfer from HSePh at higher temperatures. The reaction of H-Cr(CO)3C5Me5 with PhSe-SePh is accelerated by the addition of a Cr radical and occurs via a rapid radical chain reaction. In contrast, the reaction of PhTe-TePh and H-Cr(CO)3C5Me5 does not occur at any appreciable rate at room temperature, even in the presence of added Cr radicals. This is in keeping with a low PhTe-H bond strength blocking the chain and implies that H-TePh < or = 63 kcal/mol. Structural data are reported for PhSe-Cr(CO)3C5Me5 and PhS-Cr(CO)3C5Me5. The two isostructural complexes do not show signs of an increase in steric strain in terms of metal-ligand bonds or angles as the Cr-EPh bond is shortened in going from Se to S. Bond strength estimates of the PhE-H and PhE-EPh derived from density functional theory calculations are in reasonable agreement with experimental data for E = Se but not for E = Te. The nature of the singly occupied molecular orbital of the *EPh radicals is calculated to show increasing localization on the chalcogenide atom in going from S to Se to Te.  相似文献   
74.
75.
A novel thermal desorption technique using a direct-probe device (Chromatoprobe) attached to a gas chromatograph–mass spectrometer is presented for the thermal pretreatment, characterisation and analysis of molecularly imprinted polymers. The technique is demonstrated as effective for the removal of volatile materials, including template and unreacted monomers, from methacrylic acid–ethylene glycol dimethacrylate copolymers imprinted with 2-aminopyridine. Mass spectrometry is a powerful technique for polymer bleed characterisation. Thermal desorption studies on reloaded template and related compounds are reported as a means of assessing polymer morphology, specific binding by imprinted polymers compared with reference non-imprinted polymers and selective binding by an imprinted polymer for its template. Calibration studies on the thermal desorption technique using an internal standard are presented with R 2 > 0.999. The technique provides a novel method for assessment of polymer thermal stability, composition and morphology.  相似文献   
76.
The tungsten nitrido species, [W(mu-N)(CH2-t-Bu)(OAr)2]2 (Ar = 2,6-diisopropylphenyl), has been prepared in a reaction between the alkylidyne species, W(C-t-Bu)(CH2-t-Bu)(OAr)2, and organonitriles. The dimeric nature of the nitride was established in the solid state through an X-ray study and in solution through a combination of 15N NMR spectroscopy and vibrational spectroscopy. Reaction of the nitride with trimethylsilyl trifluoromethanesulfonate afforded the monomeric trimethylsilyl imido species, W(NSiMe3)(CH2-t-Bu)(OAr)2(OSO2CF3), which was also characterized crystallographically. The W2N2 core can be reduced by one electron electrochemically or in bulk with metallocenes to afford the radical anion, {n-Bu4N}{[W(mu-N)(CH2-t-Bu)(OAr)2]2}. Density functional theory calculations suggest that the lowest-energy allowable transition in [W(mu-N)(CH2-t-Bu)(OAr)2]2 is from a highest occupied molecular orbital consisting largely of ligand-based lone pairs into what is largely a metal-based lowest unoccupied molecular orbital.  相似文献   
77.
Gaseous dibenzo-7-phosphanorbornadiene P-sulfide anions APS-(A=C14H10 or anthracene) were generated via electrospray ionization, and characterized by magnetic-bottle photoelectron spectroscopy, velocity-map imaging (VMI) photoelectron spectroscopy, and quantum chemical calculations. The electron affinity (EA) and spin-orbit (SO) splitting of the APS· radical are determined from the photoelectron spectra and Franck-Condon factor simulations to be EA=(2.62±0.05) eV and SO splitting=(43±7) meV. VMI photoelectron images show strong and sharp peaks near the detachment threshold with an identical electron kinetic energy (eKE) of 17.9 meV at three different detachment wavelengths, which are therefore assigned to autodetachment from dipole-bound anion states. The B3LYP/6-31++G(d, p) calculations indicate APS· has a dipole moment of 3.31 Debye, large enough to support a dipole-bound electron.  相似文献   
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号