首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3046篇
  免费   124篇
  国内免费   7篇
化学   2550篇
晶体学   8篇
力学   47篇
数学   298篇
物理学   274篇
  2024年   2篇
  2023年   27篇
  2022年   111篇
  2021年   129篇
  2020年   84篇
  2019年   88篇
  2018年   62篇
  2017年   27篇
  2016年   110篇
  2015年   97篇
  2014年   129篇
  2013年   194篇
  2012年   223篇
  2011年   265篇
  2010年   156篇
  2009年   156篇
  2008年   230篇
  2007年   174篇
  2006年   167篇
  2005年   174篇
  2004年   137篇
  2003年   106篇
  2002年   95篇
  2001年   32篇
  2000年   26篇
  1999年   16篇
  1998年   14篇
  1997年   22篇
  1996年   19篇
  1995年   4篇
  1994年   9篇
  1993年   9篇
  1992年   7篇
  1991年   10篇
  1990年   7篇
  1989年   9篇
  1988年   5篇
  1987年   8篇
  1985年   4篇
  1984年   5篇
  1983年   2篇
  1982年   6篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1976年   1篇
  1973年   1篇
  1937年   1篇
  1932年   1篇
  1915年   1篇
排序方式: 共有3177条查询结果,搜索用时 11 毫秒
131.
Polyurethane waterborne synthesis was performed using a two-step method, commonly referred to as a prepolymer method. Nanocomposites based on waterborne polyurethane and cellulose nanocrystals were prepared by the prepolymer method by altering the mode and step in which the nanofillers were incorporated during the polyurethane formation. The morphology, structural, thermal, and mechanical properties of the resulting nanocomposite films were evaluated by Fourier transform infrared spectroscopy (FTIR), small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), and tensile tests. FTIR results indicated that the degree of interaction between the nanofillers and the WPU through hydrogen bonds could be controlled by the method of cellulose nanocrystal incorporation. Data obtained from SAXS experiments showed that the cellulose nanocrystals as well as the step of the reaction in which they are added influenced the morphology of the polyurethane. The reinforcing effect of CNCs on the nanocomposites depends on their morphology.  相似文献   
132.
133.
134.
A model-based sensitivity analysis was performed in order to evaluate the importance of the individual operating parameters of a three-phase fluidised-bed biological reactor used for removing mercury ions from wastewater. The parameters analysed involve the immobilised biomass load (bacteria P. putida) on alginate beads, particle size, inlet flow-rate, mercury ion loads in the fed wastewater, and the solid fraction in the reactor. Predictions were generated by using pseudo-first-order, Michaelis-Menten, or pseudo-Haldane kinetic models. The results highlight the major influence of the biomass/solid load and of the liquid residence time on the reactor efficiency. Also, the resultant significant differences in the model predictions underline the importance of using a more accurate kinetic model for process design and control purposes.  相似文献   
135.
Present study investigates thermal behavior of two heavy crude oils with different °API values by simultaneous thermogravimetry–differential scanning calorimetry–fourier transform infrared spectroscopy (TG–DSC–FTIR), and an evaluation of the chemical element levels present in the oils’ ashes was done by energy dispersive X-ray fluorescence spectrometry. TG and DSC curves were obtained for two samples in nitrogen atmosphere. Among all inorganic components evaluated, the highest concentration in the two oils was SO3. Thus this study may contribute to a better understanding of the thermal behavior of heavy crude oils and their composition.  相似文献   
136.
Theoretical calculations at the B3LYP/6-311++G(d,p) level have been carried out on the reaction path connecting a dipeptide to an imidazolinone as a model for the formation of GFP. In addition, we have studied the hydration effects on the processes, adding a water molecule to assist the cyclization. The solvent effects have been taken into account by introducing the monohydrated molecules into a solvent cavity with a polarized continuum model. Significant reductions of the energy barriers for the reaction path can be observed within the water-assisted processes. The solvent effects account for a barrier lowering of 4–5 kJ mol?1.  相似文献   
137.
MicroRNAs (miRNAs, miRs) are naturally occurring small RNAs (approximately 22 nucleotides in length) that have critical functions in a variety of biological processes, including tumorigenesis. They are an important target for detection technology for future medical diagnostics. In this paper we report an electrochemical method for miRNA detection based on paramagnetic beads and enzyme amplification. In particular, miR 222 was chosen as model sequence, because of its involvement in brain, lung, and liver cancers. The proposed bioassay is based on biotinylated DNA capture probes immobilized on streptavidin-coated paramagnetic beads. Total RNA was extracted from the cell sample, enriched for small RNA, biotinylated, and then hybridized with the capture probe on the beads. The beads were then incubated with streptavidin–alkaline phosphatase and exposed to the appropriate enzymatic substrate. The product of the enzymatic reaction was electrochemically monitored. The assay was finally tested with a compact microfluidic device which enables multiplexed analysis of eight different samples with a detection limit of 7 pmol L?1 and RSD?=?15 %. RNA samples from non-small-cell lung cancer and glioblastoma cell lines were also analyzed.  相似文献   
138.

The primary objective of this study is to evaluate the thermal stability of the active films with the cellulose nanostructure (CNS, 5?mass%) treated with encapsulated essential oils (EOs), eugenol and linalool. CNS untreated and treated were incorporated in the poly(butylene adipate-co-terephthalate) (PBAT) polymer matrix prepared by casting. In this study, all samples were characterized by FTIR, DRX, TG, DSC and SEM, elucidating the contribution of each component in the final films. CNS untreated and treated with EOs were characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis (TGA), confirming the interaction between these components. The active biofilms were analyzed by TGA and DSC analyses (differential scanning calorimetry), confirming that their thermal stability was maintained similar to the neat PBAT film, without loss of properties. The CI (crystallinity index, %) of the polymeric films was calculated from heat fusion (ΔH) values, indicating that the incorporation of the nanostructures into the PBAT matrix increases the crystallinity of the biofilms, from 11.5 (neat PBAT) to 13.8% (PBAT/CNS-E), acting as a nucleating agent in the polymeric matrix. The presence of the EOs did not decrease the CNS stability, as well of the biocomposite films. Moreover, the thermal analysis confirmed that the EO was well involved by the CNS, before and after the incorporation in the PBAT polymer, as observed in the SEM images.

  相似文献   
139.
Rational design and development of tailorable simple synthesis process remains a centerpiece of investigational efforts toward engineering advanced hydrogels. In this study, a green and scalable synthesis approach is developed to formulate a set of gelatin‐based macroporous hybrid hydrogels. This approach consists of four sequential steps starting from liquid‐phase pre‐crosslinking/grafting, unidirectional freezing, freeze‐drying, and finally post‐curing process. The chemical crosslinking mainly involves between epoxy groups of functionalized polyethylene glycol and functional groups of gelatin both in liquid and solid state. Importantly, this approach allows to accommodate different polymers, chitosan or hydroxyethyl cellulose, under identical benign condition. Structural and mechanical anisotropy can be tuned by the selection of polymer constituents. Overall, all hydrogels show suitable structural stability, good swellability, high porosity and pore interconnectivity, and maintenance of mechanical integrity during 3‐week‐long hydrolytic degradation. Under compression, hydrogels exhibit robust mechanical properties with nonlinear elasticity and stress‐relaxation behavior and show no sign of mechanical failure under repeated compression at 50% deformation. Biological experiment with human bone marrow mesenchymal stromal cells (hMSCs) reveals that hydrogels are biocompatible, and their physicomechanical properties are suitable to support cells growth, and osteogenic/chondrogenic differentiation, demonstrating their potential application for bone and cartilage regenerative medicine toward clinically relevant endpoints.  相似文献   
140.
The metal‐directed supramolecular synthetic approach has paved the way for the development of functional nanosized molecules. In this work, we report the preparation of the new nanocapsule 3? (CF3SO3)8 with a A4B2 tetragonal prismatic geometry, where A corresponds to the dipalladium hexaazamacrocyclic complex Pd‐1 , and B corresponds to the tetraanionic form of palladium 5,10,15,20‐tetrakis(4‐carboxyphenyl)porphyrin ( 2 ). The large void space of the inner cavity and the supramolecular affinity for guest molecules towards porphyrin‐based hosts converts this nanoscale molecular 3D structure into a good candidate for host–guest chemistry. The interaction between this nanocage and different guest molecules has been studied by means of NMR, UV/Vis, ESI‐MS, and DOSY experiments, from which highly selective molecular recognition has been found for anionic, planar‐shaped π guests with association constants (Ka) higher than 109 M ?1, in front of non‐interacting aromatic neutral or cationic substrates. DFT theoretical calculations provided insights to further understand this strong interaction. Nanocage 3? (CF3SO3)8 can not only strongly host one single molecule of M(dithiolene)2 complexes (M=Au, Pt, Pd, and Ni), but also can finely tune their optical and redox properties. The very simple synthesis of both the supramolecular cage and the building blocks represents a step forward for the development of polyfunctional supramolecular nanovessels, which offer multiple applications as sensors or nanoreactors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号