首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   3篇
化学   46篇
晶体学   1篇
力学   2篇
数学   3篇
物理学   4篇
  2020年   3篇
  2018年   2篇
  2014年   1篇
  2012年   4篇
  2011年   7篇
  2008年   4篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1989年   2篇
  1980年   3篇
  1979年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
31.
Interactions between pyridine‐2,5‐dicarboxylic acid and Zn(II), Ni(II), Pb(II), Cd(II), and Cu(II) were characterized in aqueous solutions (20°C; I = 0.4 (KNO3)) by means of d.c.‐polarography, spectrophotometry, and 1H NMR spectroscopy. Polarography was used to determine the concentration of free metal ions in the presence of 10‐fold excess ligand in weakly alkaline solutions, and to determine stability constants for the Zn(II), Cd(II), and Cu(II) complexes with pyridine‐2,5‐dicarboxylic acid. 1H NMR spectroscopy was used to further characterize complex formation. © 2005 Wiley Periodicals, Inc. 16:285–291, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20123  相似文献   
32.
The electron transfer self-exchange rate constant between the oxidized and reduced forms of amavadin equals approximately 1 x 10(5) dm3 mol(-1) s(-1) at 25 degrees C and represents the first unambiguous example for a vanadium(IV/V) couple.  相似文献   
33.
(51)V solid-state NMR (SSNMR) studies of a series of noninnocent vanadium(V) catechol complexes have been conducted to evaluate the possibility that (51)V NMR observables, quadrupolar and chemical shift anisotropies, and electronic structures of such compounds can be used to characterize these compounds. The vanadium(V) catechol complexes described in these studies have relatively small quadrupolar coupling constants, which cover a surprisingly small range from 3.4 to 4.2 MHz. On the other hand, isotropic (51)V NMR chemical shifts cover a wide range from -200 to 400 ppm in solution and from -219 to 530 ppm in the solid state. A linear correlation of (51)V NMR isotropic solution and solid-state chemical shifts of complexes containing noninnocent ligands is observed. These experimental results provide the information needed for the application of (51)V SSNMR spectroscopy in characterizing the electronic properties of a wide variety of vanadium-containing systems and, in particular, those containing noninnocent ligands and that have chemical shifts outside the populated range of -300 to -700 ppm. The studies presented in this report demonstrate that the small quadrupolar couplings covering a narrow range of values reflect the symmetric electronic charge distribution, which is also similar across these complexes. These quadrupolar interaction parameters alone are not sufficient to capture the rich electronic structure of these complexes. In contrast, the chemical shift anisotropy tensor elements accessible from (51)V SSNMR experiments are a highly sensitive probe of subtle differences in electronic distribution and orbital occupancy in these compounds. Quantum chemical (density functional theory) calculations of NMR parameters for [VO(hshed)(Cat)] yield a (51)V chemical shift anisotropy tensor in reasonable agreement with the experimental results, but surprisingly the calculated quadrupolar coupling constant is significantly greater than the experimental value. The studies demonstrate that substitution of the catechol ligand with electron-donating groups results in an increase in the HOMO-LUMO gap and can be directly followed by an upfield shift for the vanadium catechol complex. In contrast, substitution of the catechol ligand with electron-withdrawing groups results in a decrease in the HOMO-LUMO gap and can directly be followed by a downfield shift for the complex. The vanadium catechol complexes were used in this work because (51)V is a half-integer quadrupolar nucleus whose NMR observables are highly sensitive to the local environment. However, the results are general and could be extended to other redox-active complexes that exhibit coordination chemistry similar to that of the vanadium catechol complexes.  相似文献   
34.
Dynamic light scattering and NMR spectroscopic experimental evidence suggest the coexistence of two compositionally different self-assembled particles in solution. The self-assembled particles form in solutions containing water, Aerosol OT (AOT, sodium bis(2-ethylhexyl) sulfosuccinate) surfactant, and cholesterol in cyclohexane. In a similar series of studies carried out in 1-octanol only one aggregate type, that is, reverse micelles, is observed. Dynamic light scattering measurements reveal the presence of two different types of aggregates in the microemulsions formed in cyclohexane, demonstrating the coexistence of two compositionally distinct structures with very similar Gibbs energies. One particle type consists of standard AOT reverse micelles while the second type of particle consists of submicellar aggregates including cholesterol as well as small amounts of AOT and water. In microemulsions employing 1-octanol as the continuous medium, AOT reverse micelles form in a dispersed solution of cholesterol in 1-octanol. Although the size distribution of self-assembled particles is well-known for many different systems, evidence for simultaneous formation of two distinctly sized particles in solution that are chemically different is unprecedented. The ability to form microemulsion solutions that contain coexisting particles may have important applications in drug formulation and administration, particularly as applied to drug delivery using cholesterol as a targeting agent.  相似文献   
35.
The chemistry and short lifetimes of metal‐based anti‐cancer drugs can be turned into an advantage for direct injections into tumors, which then allow the use of highly cytotoxic drugs. The release of their less toxic decomposition products into the blood will lead to decreased toxicity and can even have beneficial effects. We present a ternary VV complex, 1 ([VOL1L2], where L1 is N‐(salicylideneaminato)‐N′‐(2‐hydroxyethyl)ethane‐1,2‐diamine and L2 is 3,5‐di‐tert‐butylcatechol), which enters cells intact to induce high cytotoxicity in a range of human cancer cells, including T98g (glioma multiforme), while its decomposition products in cell culture medium were ≈8‐fold less toxic. 1 was 12‐fold more toxic than cisplatin in T98g cells and 6‐fold more toxic in T98g cells than in a non‐cancer human cell line, HFF‐1. Its high toxicity in T98g cells was retained in the presence of physiological concentrations of the two main metal‐binding serum proteins, albumin and transferrin. These properties favor further development of 1 for brain cancer treatment by intratumoral injections.  相似文献   
36.
Using (51)V magic angle spinning solid-state NMR, SSNMR, spectroscopy and quantum chemical DFT calculations we have characterized the chemical shift and quadrupolar coupling parameters of a series of eight hydroxylamido vanadium(V) dipicolinate complexes of the general formula VO(dipic)(ONR1R2)(H2O) where R1 and R2 can be H, CH3, or CH2CH3. This class of vanadium compounds was chosen for investigation because of their seven-coordinate vanadium atom, a geometry for which there is limited (51)V SSNMR data. Furthermore, a systematic series of compounds with different electronic properties are available and allows for the effects of ligand substitution on the NMR parameters to be studied. The quadrupolar coupling constants, C(Q), are small, 3.0-3.9 MHz, but exhibit variations as a function of the ligand substitution. The chemical shift tensors in the solid state are sensitive to changes in both the hydroxylamide substituent and the dipic ligand, a sensitivity which is not observed for isotropic chemical shifts in solution. The chemical shift tensors span approximately 1000 ppm and are nearly axially symmetric. On the basis of DFT calculations of the chemical shift tensors, one of the largest contributors to the magnetic shielding anisotropy is an occupied molecular orbital with significant vanadium d(z)2 character along the V=O bond.  相似文献   
37.
Using a wide range of different methods, researchers have found that the environment inside reverse micelles differs from bulk aqueous solution in many ways. Here, we present a new tool, a series of aqueous oxovanadium(V) reactions, to probe pH, viscosity, and ionic strength in the aqueous interior of reverse micelles. In addition to their potential as anionic probe analogues to phosphates, simple oxovanadium(V) compounds have equilibrium characteristics in aqueous media exquisitely sensitive to their environment. Therefore, the speciation of vanadate equilibria can be used as a parameter to characterize the intramicellar medium. Vanadate speciation is monitored through 51V NMR spectroscopy, which also yields information through chemical shifts and linewidths of spectral features. The speciation observed suggests that the relative acidity of a basic vanadate stock solution is slightly reduced in large, w0 >or= 12, reverse micelles, but that for smaller reverse micelles, speciation reflects the strong interaction of these negatively charged oxometalates with the reverse micelle and suggest an increased solution viscosity in the reverse micelles. This interpretation is obtained through different responses closely linked to the reverse micellar size and the specific conditions in the stock solutions used to form reverse micelles.  相似文献   
38.
We explore the interactions of VIII‐, VIV‐, and VV‐2,6‐pyridinedicarboxylic acid (dipic) complexes with model membrane systems and whether these interactions correlate with the blood‐glucose‐lowering effects of these compounds on STZ‐induced diabetic rats. Two model systems, dipalmitoylphosphatidylcholine (DPPC) Langmuir monolayers and AOT (sodium bis(2‐ethylhexyl)sulfosuccinate) reverse micelles present controlled environments for the systematic study of these vanadium complexes interacting with self‐assembled lipids. Results from the Langmuir monolayer studies show that vanadium complexes in all three oxidation states interact with the DPPC monolayer; the VIII–phospholipid interactions result in a slight decrease in DPPC molecular area, whereas VIV and VV–phospholipid interactions appear to increase the DPPC molecular area, an observation consistent with penetration into the interface of this complex. Investigations also examined the interactions of VIII‐ and VIV‐dipic complexes with polar interfaces in AOT reverse micelles. Electron paramagnetic resonance spectroscopic studies of VIV complexes in reverse micelles indicate that the neutral and smaller 1:1 VIV‐dipic complex penetrates the interface, whereas the larger 1:2 VIV complex does not. UV/Vis spectroscopy studies of the anionic VIII‐dipic complex show only minor interactions. These results are in contrast to behavior of the VV‐dipic complex, [VO2(dipic)]?, which penetrates the AOT/isooctane reverse micellar interface. These model membrane studies indicate that VIII‐, VIV‐, and VV‐dipic complexes interact with and penetrate the lipid interfaces differently, an effect that agrees with the compounds’ efficacy at lowering elevated blood glucose levels in diabetic rats.  相似文献   
39.
The effects of oral treatment of rats with streptozotocin-induced diabetes with a range of vanadium dipicolinate complexes (Vdipic) and derivatives are reviewed. Structure–reactivity relationships are explored aiming to correlate properties such as stability, to their insulin-enhancing effects. Three types of modifications are investigated; first, substitutions on the aromatic ring, second, coordination of a hydroxylamido group to the vanadium, and third, changes in the oxidation state of the vanadium ion. These studies allowed us to address the importance of coordination chemistry, and redox chemistry, as modes of action. Dipicolinate was originally chosen as a ligand because the dipicolinatooxovanadium(V) complex (V5dipic), is a potent inhibitor of phosphatases. The effect of vanadium oxidation state (3, 4 or 5), on the insulin-enhancing properties was studied in both the Vdipic and VdipicCl series. Effects on blood glucose, body weight, serum lipids, alkaline phosphatase and aspartate transaminase were selectively monitored. Statistically distinct differences in activity were found, however, the trends observed were not the same in the Vdipic and VdipicCl series. Interperitoneal administration of the Vdipic series was used to compare the effect of administration mode. Correlations were observed for blood vanadium and plasma glucose levels after V5dipic treatment, but not after treatment with corresponding V4dipic and V3dipic complexes. Modifications of the aromatic ring structure with chloride, amine or hydroxyl groups had limited effects. Global gene expression was measured using Affymetrix oligonucleotide chips. All diabetic animals treated with hydroxyl substituted V5dipic (V5dipicOH) and some diabetic rats treated with vanadyl sulfate had normalized hyperlipidemia yet uncontrolled hyperglycemia and showed abnormal gene expression patterns. In contrast to the normal gene expression profiles previously reported for some diabetic rats treated with vanadyl sulfate, where both hyperlipidemia and hyperglycemia were normalized. Modification of the metal, changing the coordination chemistry to form a hydroxylamine ternary complex, had the most influence on the anti-diabetic action. Vanadium absorption into serum was determined by atomic absorption spectroscopy for selected vanadium complexes. Only diabetic rats treated with the ternary V5dipicOH hydroxylamine complex showed statistically significant increases in accumulation of vanadium into serum compared to diabetic rats treated with vanadyl sulfate. The chemistry and physical properties of the Vdipic complexes correlated with their anti-diabetic properties. Here, we propose that compound stability and ability to interact with cellular redox reactions are key components for the insulin-enhancing activity of vanadium compounds. Specifically, we found that the most overall effective anti-diabetic Vdipic compounds were obtained when the compound administered had an increased coordination number in the vanadium complex.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号