首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   5篇
化学   78篇
数学   5篇
物理学   10篇
  2023年   4篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   9篇
  2011年   8篇
  2010年   11篇
  2009年   8篇
  2008年   8篇
  2007年   8篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2000年   1篇
  1998年   1篇
  1972年   2篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
11.
12.
The high‐pressure (HP) modification of CePdSn was synthesized under multianvil high‐pressure (10.5 GPa) high‐temperature (1100 °C) conditions from the normal‐pressure (NP) modification. The structures of both modifications were studied by X‐ray powder and single crystal diffraction: TiNiSi type, Pnma, a = 754.1(2), b = 470.6(1), c = 798.4(3) pm, wR2 = 0.0333, 945 F2 values, 20 variables for NP‐CePdSn and ZrNiAl type, , a = 760.03(5), c = 416.06(3) pm, wR2 = 0.0443, 248 F2 values, 13 variables for HP‐CePdSn. The structural chemistry of both modifications is goverened by platinum centered trigonal prisms. The platinum and tin atoms in NP‐CePdSn and HP‐CePdSn build up a three‐dimensional [PdSn] network in which the cerium atoms fill channels. Susceptibility measurements on HP‐CePdSn reveal an experimental magnetic moment of 2.55(1) μB/Ce atom in the paramagnetic region. At 5 K a paramagnetic‐to‐antiferromagnetic transition is evident from magnetization and specific heat measurements.  相似文献   
13.
Single crystals of a third modification of Ag2Te2O6 (denoted as Ag2Te2O6–III) and of Ag4TeO5 have been obtained as minor by‐products during hydrothermal phase formation experiments in the system Ag‐Hg‐Te‐O. The crystal structure of Ag2Te2O6–III (P21/c, Z = 4, a = 6.4255(10), b = 6.9852(11), c = 13.204(2) Å, β = 90.090(3)°, 1885 independent reflections, R[F2 > 2σ(F2)] = 0.0334, wR2(F2 all) = 0.0817) comprises tellurium in oxidation states +IV and +VI and is topologically related to the structure of the Ag2Te2O6–I modification, which consists of similar layers and interjacent layers of Ag+ cations. Ag4TeO5 (C2/c, Z = 8, a = 16.271(2), b = 6.0874(10), c = 11.4373(16) Å, β = 106.730(10)°, 2372 independent reflections, R[F2 > 2σ(F2)] = 0.0288, wR2(F2 all) = 0.0737) is made up of a layer‐like arrangement of isolated [TeVI2O10] double octahedra and of Ag+ cations situated both in layers parallel and inside the layers of the anionic moieties.  相似文献   
14.
Constructive machine learning aims to create examples from its learned domain which are likely to exhibit similar properties. Here, a recurrent neural network was trained with the chemical structures of known cell-migration modulators. This machine learning model was used to generate new molecules that mimic the training compounds. Two top-scoring designs were synthesized, and tested for functional activity in a phenotypic spheroid cell migration assay. These computationally generated small molecules significantly increased the migration of medulloblastoma cells. The results further corroborate the applicability of constructive machine learning to the de novo design of druglike molecules with desired properties.  相似文献   
15.
We describe an approach to synthesize colloidal nanocrystal heterodimers composed of CoPt(3) and Au. The growth is based on the nucleation of gold domains on preformed CoPt(3) nanocrystals. It is a highly versatile methodology which allows us to tune independently the size of the two domains in each dimer by varying several reaction parameters. The statistical analysis of the distribution of the domain sizes in the dimers and the compositional mapping achieved by dark field imaging and energy dispersive spectroscopy confirm that the two domains in each dimer are indeed made of CoPt(3) and Au, respectively. Structural characterization by high-resolution transmission electron microscopy shows that the two domains, both having cubic fcc Bravais lattice, can share a common {111}, {100}, or {110} facet, depending on the size of the initial CoPt(3) seeds. The magnetization measurements evidence a ferromagnetic CoPt(3) phase with a relatively low anisotropy as a consequence of their disordered crystalline structure, regardless of the presence of a Au tip. We believe that this prototype of nanocrystal dimer, which can be manipulated under air, can find several applications in nanoscience, as the Au section can be exploited as the preferential anchor point for various molecules, while the CoPt(3) domain can be used for magnetic detection.  相似文献   
16.
The rare‐earth metal germanides RE2Ge9 (RE = Nd, Sm) have been prepared by thermal decomposition of the metastable high‐pressure phases REGe5 at ambient pressure. The compounds adopt an orthorhombic unit cell with a = 396.34(4) pm; b = 954.05(8) pm and c = 1238.4(1) pm for Nd2Ge9 and a = 395.46(7) pm; b = 946.4(2) pm and c = 1232.1(3) pm for Sm2Ge9. Crystal structure refinements reveal space group Pmmn (No. 59) for Nd2Ge9. The atomic pattern resembles an ordered defect variety of the pentagermanide motif REGe5 (RE = La; Nd, Sm, Gd, Tb) comprising corrugated germanium layers. These condense into a three‐dimensional network interconnected by eight‐coordinated germanium atoms. The resulting framework channels along [100] enclose the neodymium atoms. With respect to the atomic arrangement of the pentagermanides, half of the interlayer germanium atoms are eliminated in an ordered way so that occupied and empty germanium columns alternate along [001]. The rare‐earth metal atoms of both types of compounds, REGe5 and RE2Ge9, exhibit the electronic states 4f 3 and 4f 5 (oxidation state +3) for neodymium and samarium, respectively, evidencing that the modification of the germanium network leaves the electron configuration of the metal atoms unaffected.  相似文献   
17.
18.
The crystal interaction density is generally assumed to be a suitable measure of the polarization of a low-molecular weight ligand inside an enzyme, but this approximation has seldomly been tested and has never been quantified before. In this study, we compare the crystal interaction density and the interaction electrostatic potential for a model compound of loxistatin acid (E64c) with those inside cathepsin B, in solution, and in vacuum. We apply QM/MM calculations and experimental quantum crystallography to show that the crystal interaction density is indeed very similar to the enzyme interaction density. Less than 0.1 e are shifted between these two environments in total. However, this difference has non-negligible consequences for derived properties.  相似文献   
19.
20.
A nonhydrolytic route to quantum-sized (d < 9 nm) ZnO nanocrystals in homogeneous organic solutions is presented. Nearly spherical ZnO nanocrystals were grown in a surfactant mixture of hexadecylamine and oleic acid (OLEA) by means of a two-step chemical process, based on the hot reduction (at 180-250 degrees C) of a zinc halide by superhydride (LiBEt3H) followed by oxidation of the resulting product. The experimental results suggested that the controlled growth of ZnO in the nanosized regime depended both on the OLEA-assisted generation of intermediate metallic nanoparticles and on the adjustment of their oxidation conditions by using a mild oxidant, trimethylamine-N-oxide, rather than molecular oxygen. The present synthetic approach demonstrates to be particularly suitable to prepare organic-soluble ultra-small ZnO nanocrystals of low size dispersion and of stable size, which are appealing for optoelectronic, catalytic, and sensing purposes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号