首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   960篇
  免费   40篇
  国内免费   2篇
化学   722篇
晶体学   1篇
力学   37篇
数学   115篇
物理学   127篇
  2024年   1篇
  2023年   11篇
  2022年   13篇
  2021年   22篇
  2020年   17篇
  2019年   22篇
  2018年   14篇
  2017年   11篇
  2016年   23篇
  2015年   29篇
  2014年   40篇
  2013年   39篇
  2012年   66篇
  2011年   83篇
  2010年   63篇
  2009年   49篇
  2008年   70篇
  2007年   82篇
  2006年   69篇
  2005年   78篇
  2004年   49篇
  2003年   44篇
  2002年   31篇
  2001年   9篇
  2000年   7篇
  1999年   11篇
  1998年   5篇
  1997年   5篇
  1996年   6篇
  1995年   5篇
  1994年   6篇
  1993年   5篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1983年   2篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1960年   1篇
  1932年   2篇
  1910年   1篇
  1895年   1篇
排序方式: 共有1002条查询结果,搜索用时 15 毫秒
101.
Ring-opening polymerisation of epsilon-caprolactone in supercritical carbon dioxide is slowed down by a carbonation reaction, resulting in a positive volume of activation and a higher energy of activation as compared to polymerisation in a regular hydrocarbon solvent.  相似文献   
102.
We consider massive charged Dirac fields on the Reissner-Nordstrøm metric. We prove the existence and asymptotic completeness of wave operators, classical at horizon and modified at infinity. Communicated by Piotr Chrusciel submitted 24/05/02, accepted: 14/02/03  相似文献   
103.
The difference in adsorption behavior between a conventional monomeric endcapped C18 stationary phase (3.43 micromol/m2) and an endcapped polymeric RP-Amide phase (3.31 micromol/m2) was investigated. The adsorption isotherms of four compounds (phenol, caffeine, sodium 2-naphthalene sulfonate, and propranololium chloride) were measured by frontal analysis (FA) and the degree of heterogeneity of each phase for each solute was characterized by their adsorption energy distributions (AED), derived using the Expectation-Maximization method. The results show that only certain analytes (phenol and 2-naphthalene sulfonate) are sensitive to the presence of the polar embedded amide groups within the RP phase. Their binding constants on the amide-bonded phase are significantly higher than on conventional RPLC phases. Furthermore, an additional type of adsorption sites was observed for these two compounds. However, these sites having a low density, their presence does not affect much the retention factors of the two analytes. On the other hand, the adsorption behavior of the other two analytes (caffeine and propranololium chloride) is almost unaffected by the presence of the amide group in the bonded layer. Strong selective interactions may explain these observations. For example, hydrogen-bond interactions between an analyte (e.g., phenol or naphthalene sulfonate) and the carbonyl group (acceptor) or the nitrogen (donor) of the amido-embedded group may take place. No such interactions may take place with either caffeine or the cation propranololium chloride. This study confirms the hypothesis that analytes have ready access to locations deep inside the bonded layer, where the amide groups are present.  相似文献   
104.
105.
Curcumin‐loaded collagen cryostructurates have been devised for wound healing applications. Curcumin displays strong antioxidant, antiseptic, and anti‐inflammatory properties, while collagen is acknowledged for promoting cell adhesion, migration and differentiation. However, when curcumin is loaded directly into collagen hydrogels, it forms large molecular aggregates and clogs the matrix pores. A double‐encapsulation strategy is therefore developed by loading curcumin into lipid nanoparticles (LNP), and embedding these particles inside collagen scaffolds. The resulting collagen/LNP cryostructurates have an optimal fibrous structure with ≈100 µm average pore size for sustaining cell migration. Results show that collagen is structurally unaltered and that nanoparticles are homogeneously distributed amidst collagen fibers. Hydrogels soaked in saline buffer release about 20 to 30% of their nanoparticles content within 24 h, while achieved 100% release after 25 days. When exposed to NIH 3T3 fibroblasts, these hydrogels provide a satisfactory scaffold for cell interaction as early as 4 h after seeding, with no cytotoxic counter effect. These positive features make the collagen/lipid cryostructurates a promising material for further use in wound healing.  相似文献   
106.
Zinc oxide is considered as a very promising material for optoelectronics. However, to date, the difficulty in producing stable p-type ZnO is a bottleneck, which hinders the advent of ZnO-based devices. In that context, nitrogen-doped zinc oxide receives much attention. However, numerous reviews report the controversial character of p-type conductivity in N-doped ZnO, and recent theoretical contributions explain that N-doping alone cannot lead to p-typeness in Zn-rich ZnO. We report here that the ammonolysis at low temperature of ZnO(2) yields pure wurtzite-type N-doped ZnO nanoparticles with an extraordinarily large amount of Zn vacancies (up to 20%). Electrochemical and transient spectroscopy studies demonstrate that these Zn-poor nanoparticles exhibit a p-type conductivity that is stable over more than 2 years under ambient conditions.  相似文献   
107.
108.
Overloaded band profiles of phenol were measured on a C18-Kromasil column in gradient elution conditions. The mobile phase used was a mixture of methanol and water. The volume fraction of methanol was allowed to vary between 0 and 0.5. A general adsorption model, which expresses the amount of phenol adsorbed q* as a function of both its concentration C and the composition phi of the organic modifier (methanol) in the mobile phase, was empirically derived from previous independent adsorption experiments based on frontal analysis (FA) and frontal analysis by the characteristic point (FACP). Accordingly, the general model was an extension of the simplest heterogeneous model, the Bilangmuir model, to non-isocratic conditions. The low-energy sites followed the classical linear solvent strength model (LSSM), but not the high-energy sites whose saturation capacity linearly decreased with phi. The general model was validated by comparing the experimental and simulated band profiles in gradient elution conditions, in linear and non-linear conditions, as well. The band profiles were calculated by means of the equilibrium-dispersive model of chromatography with a finite difference algorithm. A very good agreement was observed using steps gradient (delta phi) from 0 to 50% methanol and gradient times t(g) of 20, 25, 30, 40, 60, 80 and 100 min. The agreement was still excellent for steps gradient from 5 to 45% (t(g) = 25 min), 5 to 35% (t(g) = 50 min), 5 to 25% (t(g) = 50 min) and 5 to 15% (t(g) = 50 min). Significative differences appeared between experience and simulation when the slope of the gradient (delta phi/t(g)) became too strong beyond 3.3% methanol per minute. This threshold value probably mirrored the kinetic of arrangement of the G18-bonded chains when the methanol content increased in the mobile phase. It suggested that the chromatographic system was not in a full thermodynamic equilibrium state when very steep mobile phase gradients were applied.  相似文献   
109.
Structured latexes provide a promising route to hard coatings without the use of coalescing aids. We studied the thermomechanical properties of films from structured soft‐core/hard‐shell hydrophobic latexes. We found that the mechanical properties of these films were closely related to their very particular organization. When the rigid phase was continuous, whatever its volume fraction, the films exhibited a high elastic modulus. An analysis of the viscoelastic properties of the films provided a good method for obtaining information about the interphase between the hard shell and soft core of the latex particles. By varying the film structure through annealing or the particle composition (core/shell ratio, core crosslinking, etc.), we were able to tune the mechanical properties of the films. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2989–3000, 2000  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号