首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   17篇
  国内免费   1篇
化学   256篇
力学   7篇
数学   31篇
物理学   66篇
  2023年   2篇
  2022年   3篇
  2021年   7篇
  2020年   6篇
  2019年   5篇
  2018年   2篇
  2017年   6篇
  2016年   20篇
  2015年   11篇
  2014年   14篇
  2013年   25篇
  2012年   20篇
  2011年   37篇
  2010年   22篇
  2009年   18篇
  2008年   26篇
  2007年   30篇
  2006年   16篇
  2005年   8篇
  2004年   7篇
  2003年   9篇
  2002年   9篇
  2001年   5篇
  2000年   4篇
  1999年   6篇
  1998年   4篇
  1997年   4篇
  1996年   7篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1985年   1篇
  1984年   3篇
  1982年   4篇
  1981年   1篇
排序方式: 共有360条查询结果,搜索用时 15 毫秒
101.
A new family of ruthenium complexes based on the N‐pentadentate ligand Py2Metacn (N‐methyl‐N′,N′′‐bis(2‐picolyl)‐1,4,7‐triazacyclononane) has been synthesised and its catalytic activity has been studied in the water‐oxidation (WO) reaction. We have used chemical oxidants (ceric ammonium nitrate and NaIO4) to generate the WO intermediates [RuII(OH2)(Py2Metacn)]2+, [RuIII(OH2)(Py2Metacn)]3+, [RuIII(OH)(Py2Metacn)]2+ and [RuIV(O)(Py2Metacn)]2+, which have been characterised spectroscopically. Their relative redox and pH stability in water has been studied by using UV/Vis and NMR spectroscopies, HRMS and spectroelectrochemistry. [RuIV(O)(Py2Metacn)]2+ has a long half‐life (>48 h) in water. The catalytic cycle of WO has been elucidated by using kinetic, spectroscopic, 18O‐labelling and theoretical studies, and the conclusion is that the rate‐determining step is a single‐site water nucleophilic attack on a metal‐oxo species. Moreover, [RuIV(O)(Py2Metacn)]2+ is proposed to be the resting state under catalytic conditions. By monitoring CeIV consumption, we found that the O2 evolution rate is redox‐controlled and independent of the initial concentration of CeIV. Based on these facts, we propose herein that [RuIV(O)(Py2Metacn)]2+ is oxidised to [RuV(O)(Py2Metacn)]2+ prior to attack by a water molecule to give [RuIII(OOH)(Py2Metacn)]2+. Finally, it is shown that the difference in WO reactivity between the homologous iron and ruthenium [M(OH2)(Py2Metacn)]2+ (M=Ru, Fe) complexes is due to the difference in the redox stability of the key MV(O) intermediate. These results contribute to a better understanding of the WO mechanism and the differences between iron and ruthenium complexes in WO reactions.  相似文献   
102.
103.
Peroxo intermediates are implicated in the catalytic cycles of iron enzymes involved in dioxygen metabolism. X-ray absorption spectroscopy has been used to gain insight into the iron coordination environments of the low-spin complex [Fe(III)(Me-TPEN)(eta(1)-OOH)](2+)(1) and the high-spin complex [Fe(III)(Me-TPEN)(eta(2)-O(2))](+)(2)(the neutral pentadentate N-donor ligand Me-TPEN =N-methyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine) and obtain metrical parameters unavailable from X-ray crystallography. The complexes exhibit relatively large pre-edge peak areas of approximately 15 units, indicative of iron centers with significant distortions from centrosymmetry. These distortions result from the binding of peroxide, either end-on hydroperoxo for 1 (r(Fe-O)= 1.81A) or side-on peroxo for 2 (r(Fe-O)= 1.99 A). The XAS analyses of 1 strongly support a six-coordinate low-spin iron(III) center coordinated to five nitrogen atoms from Me-TPEN and one oxygen atom from an end-on hydroperoxide ligand. However, the XAS analyses of 2 are not conclusive: Me-TPEN can act either as a pentadentate ligand to form a seven-coordinate peroxo complex, which has precedence in the DFT geometry optimization of [Fe(III)(N4Py)(eta(2)-O(2))](+)(the neutral pentadentate N-donor ligand N4Py =N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), or as a tetradentate ligand with a dangling pyridylmethyl arm to form a six-coordinate peroxo complex, which is precedented by the crystal structure of [Fe(2)(III)(Me-TPEN)(2)(Cl)(2)(mu-O)](2+).  相似文献   
104.
105.
106.
The present investigation establishes the feasibility of using synchrotron‐generated X‐ray beams for time‐resolved in situ imaging and diffraction of the interior components of an internal combustion engine during its operation. The demonstration experiment was carried out on beamline I12 (JEEP) at Diamond Light Source, UK. The external hutch of the JEEP instrument is a large‐scale engineering test bed for complex in situ processing and simulation experiments. The hutch incorporates a large capacity translation and rotation table and a selection of detectors for monochromatic and white‐beam diffraction and imaging. These capabilities were used to record X‐ray movies of a motorcycle internal combustion engine running at 1850 r.p.m. and to measure strain inside the connecting rod via stroboscopic X‐ray diffraction measurement. The high penetrating ability and high flux of the X‐ray beam at JEEP allowed the observation of inlet and outlet valve motion, as well as that of the piston, connecting rod and the timing chain within the engine. Finally, the dynamic internal strain within the moving connecting rod was evaluated with an accuracy of ~50 × 10?6.  相似文献   
107.
Suppose that is a normalized family in a Banach space indexed by the dyadic tree S. Using Stern's combinatorial theorem we extend important results from sequences in Banach spaces to tree‐families. More precisely, assuming that for any infinite chain β of S the sequence is weakly null, we prove that there exists a subtree T of S such that for any infinite chain β of T the sequence is nearly (resp., convexly) unconditional. In the case where is a family of continuous functions, under some additional assumptions, we prove the existence of a subtree T of S such that for any infinite chain β of T, the sequence is unconditional. Finally, in the more general setting where for any chain β, is a Schauder basic sequence, we obtain a dichotomy result concerning the semi‐boundedly completeness of the sequences .  相似文献   
108.
109.
We have extended our previously developed 3D multi-scale agent-based brain tumor model to simulate cancer heterogeneity and to analyze its impact across the scales of interest. While our algorithm continues to employ an epidermal growth factor receptor (EGFR) gene–protein interaction network to determine the cells’ phenotype, it now adds an implicit treatment of tumor cell adhesion related to the model’s biochemical microenvironment. We simulate a simplified tumor progression pathway that leads to the emergence of five distinct glioma cell clones with different EGFR density and cell ‘search precisions’. The in silico results show that microscopic tumor heterogeneity can impact the tumor system’s multicellular growth patterns. Our findings further confirm that EGFR density results in the more aggressive clonal populations switching earlier from proliferation-dominated to a more migratory phenotype. Moreover, analyzing the dynamic molecular profile that triggers the phenotypic switch between proliferation and migration, our in silico oncogenomics data display spatial and temporal diversity in documenting the regional impact of tumorigenesis, and thus support the added value of multi-site and repeated assessments in vitro and in vivo. Potential implications from this in silico work for experimental and computational studies are discussed.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号