首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   3篇
  国内免费   2篇
化学   67篇
力学   1篇
数学   26篇
物理学   27篇
  2024年   2篇
  2023年   2篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   6篇
  2013年   10篇
  2012年   9篇
  2011年   15篇
  2010年   9篇
  2009年   3篇
  2008年   5篇
  2007年   5篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
31.
La1−xAgxMnO3 samples were synthesized by standard sol-gel method with Ag concentrations of x=0.05 and 0.25. The samples from each concentration were pressed and sintered at 1000, 1200 and 1400 °C for 24 h in air for a systematic study. They were examined structurally by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD) and magnetically by Magnetic Properties Measurements System (MPMS). AFM and SEM analyses show that surface morphology changes with Ag concentration and sintering temperature (TS). It was observed that high temperature sintering leads Ag to leave material as determined from EDS analyses. XRD spectra exhibited that the crystal structure changes with Ag concentration while showing pronounced change with the sintering temperature. From the magnetic measurements, the Curie temperatures (TC) and the isothermal magnetic entropy changes (−ΔSM) were calculated. It was observed that TC increases with Ag concentration and decreases with TS. The maximum −ΔSM was calculated to be 7.2 J/kg K under the field change of 5 T for the sample sintered at 1000 °C with x=0.25.  相似文献   
32.
Surface treatment procedures such as grinding and polishing are needed to provide the ceramic dental restorative materials with proper fitting and occlusion. The treated surfaces are customarily glazed to improve the strength and smoothness. Though smoothness and wetting of the dental surfaces are important to minimize bacterial plaque retention, influence of the surface treatment and glazing procedures on the final surface roughness and its correlation to wettability are overlooked.

In this work, effect of various treatment (diamond fraising, stoning, sanding and aluminum oxide and rubber polishing) and glazing (auto and overglazing) techniques on the final roughness and the resulting wettability of dental ceramic surfaces were investigated using scanning electron microscopy (SEM) observations and atomic force microscopy (AFM) scans, 75 scans per sample. The surfaces were characterized and assigned an average roughness measure, Ra. The wettability of the same surfaces was evaluated using micro-contact angle measurements (25 micro-bubbles placed on a grid on each surface) to correlate the final surface roughness and wettability.

The results show that overglazing prevails over surface irregularities from different treatment procedures and provides homegeneously smooth surfaces with mean Ra < 10 nm. It also produces uniformly wetted surfaces with low contact angles around 20°. The autoglazed surfaces are less smooth (mean Ra around 50 nm) and displays sporadic topographic irregularities. They display larger and less uniform contact angles ranging between 35° and 50°. The results suggest that overglazing should be preferred after surface treatment to obtain a smooth and well-wetted dental ceramic surface.  相似文献   

33.
A novel calix[4]arene derivative containing benzothiazole azo groups at the upper rim was synthesized as chromogenic chemosensor, and its binding and sensing properties with heavy metal ions (Pb2+, Hg2+, Ni2+, Cd2+, Cu2+, Zn2+, Co2+, Fe2+, Mn2+, Cr3+, Ag+) were investigated by UV-vis spectroscopy and voltammetric techniques. The results of spectroscopic and voltammetric experiments showed that the chromogenic chemosensor has high selectivity towards Hg2+ ion over the other heavy metal ions. Moreover, it was shown that the interaction between Hg2+ and the chromogenic chemosensor occurs by means of the benzothiazole azo groups at the upper rim by using differential pulse voltammetry. The stoichiometric ratio and the association constant were determined as 1:1 and (6.1 ± 0.3) × 105 L mol−1 for the complex between Hg2+ and the ionophore. Furthermore, we prepared a rapid test kit for early detection of Hg2+ in aqueous environment in the concentration range of 1 × 10−4 to 1 × 10−2 M.  相似文献   
34.
We present a convergence analysis of the spectral Lagrange-Galerkinmethod for mixed periodic/non-periodic convection-diffusionproblems. The scheme is unconditionally stable, independentof the diffusion coefficient, even in the case when numericalquadrature is used. The theoretical predictions are illustratedby a series of numerical experiments. For the periodic case,our results present a significant improvement on those givenby Süli & Ware (1991) SIAM J. Numer.Anal.28, 423-445).  相似文献   
35.
4,4′-Bis(chloroacetyl)diphenyl ether (HL) was synthesized from chloroacetyl chloride and diphenyl ether in the presence of AlCl3 as catalyst by Friedel-Crafts reaction. Subsequently, its keto oxime (H2L) and glyoxime (H4L) derivatives were also prepared. Then, five new substituted 4,4′-oxy-bis(aminophenyl-glyoximes) (H4L1–5) were synthesized from 4,4′-oxy-bis(chlorophenylglyoxime) and the corresponding amines. The Ni(II), Cu(II), and Co(II) complexes of these ligands were prepared. The structures of these ligands and their complexes were identified by FT-IR, 1H NMR, and ICP-AES spectral data, elemental analyses, and magnetic measurements.  相似文献   
36.
37.
38.
39.
Dimensionality plays an important role in the charge transport properties of organic semiconductors. Although three-dimensional semiconductors, such as Si, are common in inorganic materials, imparting electrical conductivity to covalent three-dimensional organic polymers is challenging. Now, the synthesis of a three-dimensional π-conjugated porous organic polymer (3D p-POP) using catalyst-free Diels–Alder cycloaddition polymerization followed by acid-promoted aromatization is presented. With a surface area of 801 m2 g−1, full conjugation throughout the carbon backbone, and an electrical conductivity of 6(2)×10−4 S cm−1 upon treatment with I2 vapor, the 3D p-POP is the first member of a new class of permanently porous 3D organic semiconductors.  相似文献   
40.
A family of azo‐bridged covalent organic polymers (azo‐COPs) was synthesized through a catalyst‐free direct coupling of aromatic nitro and amine compounds under basic conditions. The azo‐COPs formed 3D nanoporous networks and exhibited surface areas up to 729.6 m2 g?1, with a CO2‐uptake capacity as high as 2.55 mmol g?1 at 273 K and 1 bar. Azo‐COPs showed remarkable CO2/N2 selectivities (95.6–165.2) at 298 K and 1 bar. Unlike any other porous material, CO2/N2 selectivities of azo‐COPs increase with rising temperature. It was found that azo‐COPs show less than expected affinity towards N2 gas, thus making the framework “N2‐phobic”, in relative terms. Our theoretical simulations indicate that the origin of this unusual behavior is associated with the larger entropic loss of N2 gas molecules upon their interaction with azo‐groups. The effect of fused aromatic rings on the CO2/N2 selectivity in azo‐COPs is also demonstrated. Increasing the π‐surface area resulted in an increase in the CO2‐philic nature of the framework, thus allowing us to reach a CO2/N2 selectivity value of 307.7 at 323 K and 1 bar, which is the highest value reported to date. Hence, it is possible to combine the concepts of “CO2‐philicity” and “N2‐phobicity” for efficient CO2 capture and separation. Isosteric heats of CO2 adsorption for azo‐COPs range from 24.8–32.1 kJ mol?1 at ambient pressure. Azo‐COPs are stable up to 350 °C in air and boiling water for a week. A promising cis/trans isomerization of azo‐COPs for switchable porosity is also demonstrated, making way for a gated CO2 uptake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号