首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   14篇
  国内免费   1篇
化学   201篇
晶体学   1篇
力学   8篇
数学   53篇
物理学   58篇
  2024年   2篇
  2023年   6篇
  2022年   1篇
  2021年   4篇
  2020年   11篇
  2019年   7篇
  2018年   5篇
  2017年   9篇
  2016年   13篇
  2015年   9篇
  2014年   9篇
  2013年   35篇
  2012年   27篇
  2011年   20篇
  2010年   15篇
  2009年   6篇
  2008年   17篇
  2007年   17篇
  2006年   12篇
  2005年   10篇
  2004年   10篇
  2003年   8篇
  2002年   6篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   6篇
  1996年   6篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1974年   1篇
排序方式: 共有321条查询结果,搜索用时 15 毫秒
71.
72.
Photoelectrochemical (PEC) water splitting is a promising approach for renewable solar light conversion. However, surface Fermi level pinning (FLP), caused by surface trap states, severely restricts the PEC activities. Theoretical calculations indicate subsurface oxygen vacancy (sub-Ov) could release the FLP and retain the active structure. A series of metal oxide semiconductors with sub-Ov were prepared through precisely regulated spin-coating and calcination. Etching X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and electron energy loss spectra (EELS) demonstrated Ov located at sub ∼2–5 nm region. Mott–Schottky and open circuit photovoltage results confirmed the surface trap states elimination and Fermi level de-pinning. Thus, superior PEC performances of 5.1, 3.4, and 2.1 mA cm−2 at 1.23 V vs. RHE were achieved on BiVO4, Bi2O3, TiO2 with outstanding stability for 72 h, outperforming most reported works under the identical conditions.  相似文献   
73.
Two new nickel(II) end-to-end azido-bridged compounds, cis-catena-[NiL(2)(&mgr;-N(3))](n)()(ClO(4))(n)().nH(2)O (1) and [Ni(2)L(4)(&mgr;-N(3))(2)](PF(6))(2) (2), were synthesized and characterized; L is 2-(aminoethyl)pyridine. The crystal structures of 1 and 2 were solved. Complex 1: monoclinic system, space group P2(1)/a, a = 8.637(2) ?, b = 18.9995(7) ?, c = 12.3093(7) ?, beta = 105.92(2) degrees, Z = 4. Complex 2: triclinic system, space group P&onemacr;, a = 9.139(7) ?, b = 10.124(3) ?, c = 12.024(2) ?, alpha = 70.407(14) degrees, beta = 84.19(2) degrees, gamma = 67.67(4) degrees, Z = 1. In the two complexes the nickel atom is situated in a similarly distorted octahedral environment. The two complexes are different; 1 is a one-dimensional helicoidal complex with the two L ligands and the two end-to-end azido bridges in a cis arrangement while complex 2 is a dinuclear system with two end-to-end azido bridges, indicating the extreme importance of the counteranion present (ClO(4)(-) for 1 and PF(6)(-) for 2). The magnetic properties of the two compounds were studied by susceptibility measurements vs temperature. The chi(M) vs T plot for 1 shows the shape for a weakly antiferromagnetically coupled nickel(II) one-dimensional complex without a maximum until 4 K. In contrast, for complex 2 the shape of the chi(M) vs T curve shows a maximum near 40 K, indicating medium antiferromagnetic coupling. From the spin Hamiltonian -J(ij)()S(i)()S(j)(), J values for 1 and 2 were less than -1 and -29.1 cm(-)(1), respectively. The magnetic behavior for 1 and 2 may be explained in terms of the overlap between magnetic orbitals, taking into account the torsion of the Ni(II) atoms and azido-bridging ligands in the two structures.  相似文献   
74.
Copper(I) complexes (CICs) are of great interest due to their applications as redox mediators and molecular switches. CICs present drastic geometrical change in their excited states, which interferes with their luminescence properties. The photophysical process has been extensively studied by several time-resolved methods to gain an understanding of the dynamics and mechanism of the torsion, which has been explained in terms of a Jahn–Teller effect. Here, we propose an alternative explanation for the photoinduced structural change of CICs, based on electron density redistribution. After photoexcitation of a CIC (S0→S1), a metal-to-ligand charge transfer stabilizes the ligand and destabilizes the metal. A subsequent electron transfer, through an intersystem crossing process, followed by an internal conversion (S1→T2→T1), intensifies the energetic differences between the metal and ligand within the complex. The energy profile of each state is the result of the balance between metal and ligand energy changes. The loss of electrons originates an increase in the attractive potential energy within the copper basin, which is not compensated by the associated reduction of the repulsive atomic potential. To counterbalance the atomic destabilization, the valence shell of the copper center is polarized (defined by ∇2ρ(r) and ∇2Vne(r)) during the deactivation path. This polarization increases the magnitude of the intra-atomic nuclear–electron interactions within the copper atom and provokes the flattening of the structure to obtain the geometry with the maximum interaction between the charge depletions of the metal and the charge concentrations of the ligand.  相似文献   
75.
76.
77.
The influence of low contents of a liquid crystalline polymer on the crystallization and melting behavior of isotactic polypropylene (iPP) was investigated using electron and optical microscopy, differential scanning calorimetry, and X-ray diffraction. In pure iPP, the α modification was found, whereas for iPP/Vectra blends at Vectra concentration <5%, both α and β forms were observed. The amount of β phase varied from 0.23 to 0.16. Optical microscopy showed that Vectra was able to nucleate both α and β forms. Non-isothermal crystallization produces a material with a strong tendency for recrystallization of the α and β forms (αα′ and ββ′ recrystallization) leading to double endotherms for both crystalline forms in DSC thermograms. Melting thermograms after isothermal crystallization at low temperatures showed a similar behavior. At values of Tc > 119 °C for the α form and Tc > 125 °C for the β form, only one melting endotherm was observed because enough perfect crystals, not susceptible to recrystallization, were obtained. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1949–1959, 2004  相似文献   
78.
79.
[structure: see text] A flipping motion rapidly inverts the bent structure of uranyl-salophen compounds and, consequently, causes fast enantiomerization of nonsymmetrically substituted derivatives. This process has been previously slowed by introducing bulky substituents in the imine bond region. Since the resulting complexes dissociate upon chromatographic treatment, an alternative approach to the design and synthesis of robust, nonflipping uranyl-salophen compounds is here described. Such an approach is based on the idea that the flipping motion would be blocked by connecting the para positions with respect to the phenoxide oxygens by means of polymethylene bridges of suitable length. Analysis of a number of uranyl-salophen compounds by molecular mechanics, while showing that bulky substituents in the imine bond region cause severe distortions of the ligand backbone, suggested that the best chain lengths are those that fit the gap between the phenoxide rings without altering the natural geometry of the parent uranyl-salophen compound. Calculations showed that such chains are those composed of 12 and 13 methylene units. Accordingly, chiral uranyl-salophen macrocycles bridged with 12- and 13-methylene chains were synthesized in fairly good yields and resolved by chiral HPLC.  相似文献   
80.
Structural relaxation in different epoxy-anhydride and epoxy-diamine resins has been investigated by differential scanning calorimetry using annealing and cooling rate experiments. The annealing experiments lead to the determination of enthalpy loss,H, at an equivalent annealing temperatureT a=T g-20, and for periods of annealing time, ta, between 1 h and 4 months. The variation ofH with logta, defines a relaxation rate per decade,rrpd, which is very sensitive to changes of the epoxy network. The cooling rate experiments allow the determination of the apparent activation energy,h *. The effect of the degree of crosslinking, the addition of a reactive diluent, which acts as flexibilizer, and the length of cross-link onrrpd and h* was studied.Financial support has been provided by DGICYT (Project no.PB93/1241). The authors are grateful to CIBA-GEIGY for supplying the epoxies and hardeners, and to HUNTSMAN CORPORATION EUROPE for supplying the JEFFAMINE*, J.M.H. wishes to acknowledge assistance for a sabbatical period from theMinisterio de Education y Ciencia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号