首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   759篇
  免费   27篇
  国内免费   1篇
化学   612篇
晶体学   2篇
力学   3篇
数学   69篇
物理学   101篇
  2023年   7篇
  2022年   4篇
  2021年   13篇
  2020年   11篇
  2019年   18篇
  2018年   4篇
  2017年   6篇
  2016年   19篇
  2015年   15篇
  2014年   30篇
  2013年   23篇
  2012年   51篇
  2011年   59篇
  2010年   28篇
  2009年   37篇
  2008年   52篇
  2007年   45篇
  2006年   47篇
  2005年   32篇
  2004年   38篇
  2003年   25篇
  2002年   23篇
  2001年   16篇
  2000年   17篇
  1999年   7篇
  1998年   4篇
  1997年   12篇
  1996年   9篇
  1995年   8篇
  1994年   4篇
  1993年   4篇
  1992年   12篇
  1991年   4篇
  1989年   4篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1983年   9篇
  1980年   7篇
  1979年   4篇
  1978年   5篇
  1976年   8篇
  1975年   4篇
  1974年   4篇
  1971年   3篇
  1970年   4篇
  1969年   4篇
  1966年   3篇
  1964年   3篇
  1957年   3篇
排序方式: 共有787条查询结果,搜索用时 15 毫秒
111.
A UV‐responsive polymer was prepared via condensation polymerization of 2‐nitrobenzyl(4‐(1,2‐dihydroxyethyl)phenyl)carbamate and azalaic acid dichloride. When the polymer was irradiated with UV light, the nitrobenzyl urethane protecting group was removed and the deprotected aniline underwent spontaneous 1,6‐elimination reactions, resulting in degradation of the polymer. Nanoparticles with encapsulated Nile Red were formulated with the degradable polymer and triggered burst release of Nile Red was observed when the nanoparticles were irradiated by UV light. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1161–1168  相似文献   
112.
Among the various methods exploitable to determine the bioavailability of drugs, reversed-phase liquid chromatography (RPLC) appears to be suited to creation of patterns of prediction. In this context a new stationary phase was designed in this work to reproduce, in terms of chemical structure, as accurately as possible, the main elements of cellular membranes; which include phospholipids and cholesterol molecules. An efficient synthetic pathway was developed to prepare ligands that contain a phosphate head, a long alkyl chain chemically bonded to silica, and a cholesteric moiety, in order to mimic both hydrophilic and hydrophobic interactions, and "membrane-like" organization, respectively. The new stationary phase was characterized by Fourier-transform infra red (FTIR) and (1)H-(13)C, (1)H-(31)P, and (1)H-(29)Si cross-polarization magic-angle-spinning nuclear magnetic resonance (CP MAS NMR) spectroscopy. Its chromatographic behavior has been studied by classical classification tests for RPLC columns. Despite its low surface coverage, the material produced exhibits high shape selectivity, possibly due to the organization of the grafted moieties.  相似文献   
113.
The physicochemical characterization of six alkylammonium-based protic ionic liquids (PILs) is presented. These compounds were prepared through a simple and atom-economic neutralization reaction between a tertiary amine and a Br?nsted acid, HX, where X- is HCOO-, CH3COO-, HF2-. The temperature dependency and the effect of added water on properties such as density, viscosity, ionic conductivity, and the thermal comportment of these PILs were measured and investigated. The results allowed us to classify them according to a classical Walden diagram and to appreciate their great "fragility". PILs have applicable perspectives in replacements of conventional inorganic acids for fuel cell devices and thermal transfer fluids.  相似文献   
114.
Proteomic approaches including high-resolution 2-DE are providing the tools needed to discover disease-associated biomarkers in complex biological samples. Although 2-DE is an extremely powerful approach to analyze the proteome, the separation of proteins with extreme molecular masses still remains an issue requiring improvement. Because high molecular mass (HMM) proteins larger than 150 kDa have already been observed to be differentially expressed in several pathologies such as cancer, we developed an original strategy to analyze this part of the proteome that is not easily separated by 2-DE in polyacrylamide gels. This strategy is based on the 2-DE separation of cyanogen bromide (CNBr) fragments of purified HMM protein fractions, and combines techniques including SEC fractionation, TCA precipitation, CNBr cleavage, 2-DE and MS analysis. The method was first tested on a model protein, the BSA. Preliminary results obtained using colonic tissues led to the identification of six HMM proteins with M(r) comprised between 163 and 533 kDa in their reduced state. These results demonstrated that our CNBr/2-DE approach should provide a powerful tool for identification of new biomarkers larger than 150 kDa.  相似文献   
115.
A capillary electrophoresis method is proposed to analyze the four most well-known growth hormone–releasing hormone (GHRH) analogs that are misused by athletes. Dimethyl-β-cyclodextrin used as a chiral selector allowed, for the first time, the separation of those basic peptide analogs, including enantiopeptides (sermorelin and CJC-1293) that differ by the chirality of only one amino acid. To increase the method sensitivity, electrokinetic preconcentration methods have been investigated. The large volume sample stacking with polarity switching (PS-LVSS) method with an injected sample volume corresponding to 80% of the capillary one was found superior to the sweeping in terms of signal enhancement factor (SEF). Acid and organic solvent addition to the sample (0.1 mM phosphoric acid with 30% methanol) led to a twofold signal improvement, when compared to water as a matrix. We increased capillary dimensions to provide a signal enhancement through the injection of a larger sample volume. Finally, using a combination of the optimized PS-LVSS preconcentration with the chiral capillary zone electrophoresis (CZE), the GHRH analogs were separated and limits of detection between 75 and 200 ng/mL were reached. This method was successfully applied to urine after a desalting step. An optimized C18 SPE was used for that purpose in order to provide low sample conductivity (<130 µS/cm) and preserve the efficiency of LVSS preconcentration. SEF of 640 was obtained with desalted urine spiked with sermorelin by comparison to the CZE (without preconcentration) method.  相似文献   
116.
The elaboration of nanoparticles designed for technological applications in various fields such as catalysis, optics, magnetism, electronics… needs the strict control of their characteristics, especially chemical composition, crystalline structure, size, and shape. These characteristics bring the physical properties (color, magnetism, band gap…) of the material, and also the surface to volume ratio of particles which is of high importance when they are used as a chemically active or reactive support, in catalysis for instance. The nanoparticles may have also to be surface functionalized by various species, and/or dispersed in aqueous or non aqueous media. We will show that the aqueous chemistry of metal cations is a very versatile and attractive way for the design of oxide nanomaterials, allowing the control of size, shape, and crystalline structure for polymorphic materials. Aqueous surface chemistry, including adsorption of various species, may be used to modify the morphology of nanoparticles. In some cases, redox processes can be involved to control the morphology of nanoparticles. Technologically important nanomaterials such as titania, alumina, and iron oxides are studied.  相似文献   
117.
The ionization of 1,1‐dihydridocyclopentasilane 7 has been found to yield the cyclic polysilanylsilyl cation 8 instead of the expected hydrogen‐substituted silylium ion 6 . The silyl cation 8 is stabilized by the formation of an intramolecular Si?H?Si bridge, which also provides the thermodynamic driving force for its formation. In general, the preference for the formation of Si?H?Si bridges can be used to scavenge and identify transient intermediates in the Lewis acid induced rearrangement of polysilanes. The validity of this concept has been demonstrated for one central step in this chemistry, the ring‐contraction reaction of cyclohexasilanes to form silylcyclopentasilanes.  相似文献   
118.
119.
Multiwalled carbon nanotubes have unique properties allowing their use in a wide range of applications—from microelectronics to biomedical and polymer fields. Nevertheless, a crucial aspect for their use resides in the ease of handling them during the process. Here, we report a facile route to prepare multiwalled carbon nanotubes@octavinyl polyhedral oligomeric silsesquioxanes (MWCNT@POSS) nanocomposite. The method involves the formation of a covalent bond between carboxylated MWCNTs and OV-POSS using acid-catalyzed electrophilic addition reaction. The resulting nanocomposite have been characterized by Fourier transform infrared spectroscopy (FTIR), powder X-Ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The results confirmed that the formation of MWCNT@POSS nanocomposite did not deteriorate MWCNT structure or morphology. Here, we used a 1:1 ratio of carboxylated MWCNTs and OV-POSS and the POSS content in the nanocomposite was 39.5 wt%.  相似文献   
120.
A very simple, safe and powerful method for the in situ generation of formaldehyde at low temperature in anhydrous conditions is described. This new tool avoids the use of gaseous formaldehyde and is suitable for basic carbon nucleophiles which cannot be generated in aqueous reaction media. Various substrates, including organolithium reagents and enolates, underwent smooth hydroxymethylation showing the versatility of this process. A Wittig reaction was also carried out in high yield. [reaction: see text]  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号