首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6065篇
  免费   348篇
  国内免费   52篇
化学   4577篇
晶体学   44篇
力学   112篇
数学   632篇
物理学   1100篇
  2023年   24篇
  2022年   66篇
  2021年   116篇
  2020年   94篇
  2019年   110篇
  2018年   96篇
  2017年   90篇
  2016年   199篇
  2015年   187篇
  2014年   218篇
  2013年   373篇
  2012年   428篇
  2011年   503篇
  2010年   307篇
  2009年   239篇
  2008年   402篇
  2007年   352篇
  2006年   359篇
  2005年   305篇
  2004年   284篇
  2003年   241篇
  2002年   214篇
  2001年   108篇
  2000年   101篇
  1999年   73篇
  1998年   53篇
  1997年   51篇
  1996年   61篇
  1995年   52篇
  1994年   49篇
  1993年   32篇
  1992年   32篇
  1991年   26篇
  1990年   38篇
  1989年   36篇
  1988年   29篇
  1987年   23篇
  1986年   19篇
  1985年   42篇
  1984年   29篇
  1983年   22篇
  1982年   26篇
  1981年   28篇
  1980年   20篇
  1979年   30篇
  1978年   19篇
  1977年   25篇
  1976年   22篇
  1975年   18篇
  1973年   27篇
排序方式: 共有6465条查询结果,搜索用时 536 毫秒
191.
The electronic structure of multiwalled carbon nanotubes (CNTs) has been investigated, depending on the growth temperature, using synchrotron X-ray photoelectron spectroscopy (XPS) and field emission measurements. The vertically aligned CNTs are grown via pyrolysis of ferrocene and acetylene in a broad temperature range 600-1000 degrees C. The CNTs have a cylindrical structure with a uniform diameter of 20 nm. As growth temperature increases, due to an improved crystallinity of the graphitic sheets, the width of the XPS C 1s peak becomes narrower and the intensity of the valence band increases. Field emission from the as-grown CNTs exhibits a large enhancement of current density with growth temperature, strongly correlated with the electronic structure revealed by XPS.  相似文献   
192.
We report kinetically controlled chiral supramolecular polymerization based on ligand–metal complex with a 3 : 2 (L : Ag+) stoichiometry accompanying a helical inversion in water. A new family of bipyridine-based ligands (d-L1, l-L1, d-L2, and d-L3) possessing hydrazine and d- or l-alanine moieties at the alkyl chain groups has been designed and synthesized. Interestingly, upon addition of AgNO3 (0.5–1.3 equiv.) to the d-L1 solution, it generated the aggregate I composed of the d-L1AgNO3 complex (d-L1 : Ag+ = 1 : 1) as the kinetic product with a spherical structure. Then, aggregate I (nanoparticle) was transformed into the aggregate II (supramolecular polymer) based on the (d-L1)3Ag2(NO3)2 complex as the thermodynamic product with a fiber structure, which led to the helical inversion from the left-handed (M-type) to the right-handed (P-type) helicity accompanying CD amplification. In contrast, the spherical aggregate I (nanoparticle) composed of the d-L1AgNO3 complex with the left-handed (M-type) helicity formed in the presence of 2.0 equiv. of AgNO3 and was not additionally changed, which indicated that it was the thermodynamic product. The chiral supramolecular polymer based on (d-L1)3Ag2(NO3)2 was produced via a nucleation–elongation mechanism with a cooperative pathway. In thermodynamic study, the standard ΔG° and ΔHe values for the aggregates I and II were calculated using the van''t Hoff plot. The enhanced ΔG° value of the aggregate II compared to that of the formation of aggregate I confirms that aggregate II was thermodynamically more stable. In the kinetic study, the influence of concentration of AgNO3 confirmed the initial formation of the aggregate I (nanoparticle), which then evolved to the aggregate II (supramolecular polymer). Thus, the concentration of the (d-L1)3Ag2(NO3)2 complex in the initial state plays a critical role in generating aggregate II (supramolecular polymer). In particular, NO3 acts as a critical linker and accelerator in the transformation from the aggregate I to the aggregate II. This is the first example of a system for a kinetically controlled chiral supramolecular polymer that is formed via multiple steps with coordination structural change.

The nanoparticles were transformed into the supramolecular polymer as the thermodynamic product, involving a helical inversion from left-handed to right-handed helicity.  相似文献   
193.
The metabolomic analysis of Ephedra species was performed using 1H-NMR spectroscopy and multivariate data analysis. A broad range of metabolites could be detected by 1H-NMR spectroscopy without any chromatographic separation. The principal component analysis used to reduce the huge data set obtained from the 1H-NMR spectra of the plant extracts clearly discriminated three different Ephedra species. The major differences in Ephedra sinica, Ephedra intermedia and Ephedra distachya var. distachya were found to be due to benzoic acid analogues in the aqueous fraction and ephedrine-type alkaloids in the organic fraction. Based on this metabolomic recognition, one of nine commercial Ephedra materials evaluated was shown to be a mixture of Ephedra species. This method will be a useful tool for chemotaxonomic analysis and authentification of Ephedra species including quality control of plant materials.  相似文献   
194.
Extracellular signal-regulated kinase (ERK) is a key regulatory enzyme mediating cell responses to mitogenic stimulation and is one of the key components in linking growth factor receptor activation to serine/threonine protein phosphorylation processes. Phosphorylation reaction by ERK plays an important role in many signal transduction pathways. ERK phosphorylates numerous substrates such as MBP, microtubule-associated protein 2 (MAP2) and nuclear protein. In particular, MBP is a substrate commonly employed for the detection of ERK activity and contains the consensus primary sequence PRT97P. In this paper, we compared the degree of the phosphorylation reaction of MBP substrate peptides by ERK with the three different MBP substrate peptides, MBP1(KNIVTPRTPPPSQGK), MBP2(VPRTPGGRR) and MBP3(APRTPGGRR) in order to select an efficient substrate peptide for phosphorylation reaction by ERK. The results showed that the MBP3 peptide is the most efficient substrate for phosphorylation reaction by ERK. Using MBP3 peptide, the phosphorylation reaction of MBP by ERK was monitored with both matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and capillary electrophoresis (CE). Our results demonstrate the feasibility of the CE method, the method being a simple and reliable technique in determining and characterizing various kinds of enzyme reaction especially including kinase enzymes.  相似文献   
195.
Cho GY  Bolm C 《Organic letters》2005,7(22):4983-4985
[reaction: see text] Silver salts in the presence of a chelating ligand efficiently catalyze the stereospecific imination of sulfoxides and sulfides with sulfonylamides and PhI(OAc)(2) to afford sulfoximines and sulfilimines, respectively, in good yields.  相似文献   
196.
[reaction: see text] Copper-mediated cross-coupling reactions of sulfoximines with aryl iodides and aryl bromides provide N-arylated sulfoximines in high yields. The method is complementary to the known palladium-catalyzed N-arylation and allows the preparation of N-arylated sulfoximines, which have previously been inaccessible.  相似文献   
197.
198.
Eupatilin (5,7-dihydroxy-3',4',6-trimethoxy flavone) is an active ingredient of an ethanol extract of Artemisia asiatica (DA-9601) that is used in the treatment of gastritis. In vitro and in vivo metabolism of eupatilin in the rats has been studied by LC-electrospray mass spectrometry. Rat liver microsomal incubation of eupatilin in the presence of NADPH and UDPGA resulted in the formation of four metabolites (M1-M4). M1, M2, M3 and M4 were tentatively identified as 3'- or 4'-O-demethyl-eupatilin glucuronide, eupatilin glucuronide, 6-O-demethyleupatilin and 3'- or 4'-O-demethyl-eupatilin, respectively. Those metabolites from in vitro study were also characterized in bile, plasma or urine samples after an intravenous administration of eupatilin to rats. In rat bile, plasma and urine samples, eupatilin glucuronide (M2) was a major metabolite, whereas M3, M4 and M4 glucuronide (M1) were the minor metabolites.  相似文献   
199.
The effect of terminal groups of oligomer electrolytes on the photovoltaic performance of dye-sensitized solar cells (DSSCs) have been systematically investigated to show that the terminal group plays a critical role in determining the concentration of I(3)(-), ionic conductivity, flatband potential and consequently the energy conversion efficiency.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号