首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   360篇
  免费   15篇
化学   358篇
数学   2篇
物理学   15篇
  2023年   2篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   17篇
  2015年   5篇
  2014年   8篇
  2013年   5篇
  2012年   23篇
  2011年   18篇
  2010年   16篇
  2009年   10篇
  2008年   14篇
  2007年   17篇
  2006年   26篇
  2005年   15篇
  2004年   8篇
  2003年   17篇
  2002年   13篇
  2001年   10篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   6篇
  1994年   4篇
  1993年   12篇
  1992年   9篇
  1991年   7篇
  1990年   5篇
  1988年   10篇
  1987年   3篇
  1986年   6篇
  1985年   4篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   6篇
  1979年   2篇
  1978年   2篇
  1976年   7篇
  1975年   5篇
  1973年   7篇
  1972年   2篇
  1971年   2篇
  1969年   4篇
  1968年   3篇
排序方式: 共有375条查询结果,搜索用时 15 毫秒
41.
42.
43.
44.
45.
46.
A fast, reagentless, and direct method is presented for the mass spectrometric analysis of olive oil without any sample pretreatment whatsoever. An ambient ionization technique, the low‐temperature plasma (LTP) probe, based on dielectric barrier discharge, is used to detect both minor and trace components (free fatty acids, phenolics and volatiles) in raw untreated olive oil. The method allows the measurement of free fatty acids (the main quality control parameter used to grade olive oil according to quality classes), selected bioactive phenolic compounds, and volatiles. The advantages and limitations of the direct analysis of extremely complex mixtures by the ambient ionization/tandem mass spectrometry combination are discussed and illustrated. The data presage the possible large‐scale application of direct mass spectrometric analysis methods in the characterization of olive oil and other foodstuffs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
47.
Ionization of aliphatic and aromatic aldehydes is improved by performing simultaneous chemical derivatization using 4-aminophenol to produce charged iminium ions during paper spray ionization. Accelerated reactions occur in the microdroplets generated during the paper spray ionization event for the tested aldehydes (formaldehyde, n-pentanaldehyde, n-nonanaldehyde, n-decanaldehyde, n-dodecanaldehyde, benzaldehyde, m-anisaldehyde, and p-hydroxybenzaldehyde). Tandem mass spectrometric analysis of the iminium ions using collision-induced dissociation demonstrated that straight chain aldehydes give a characteristic fragment at m/z 122 (shown to correspond to protonated 4-(methyleneamino)phenol), while the aromatic aldehyde iminium ions fragment to give a characteristic product ion at m/z 120. These features allow straightforward identification of linear and aromatic aldehydes. Quantitative analysis of n-nonaldehyde using a benchtop mass spectrometer demonstrated a linear response over 3 orders of magnitude from 2.5 ng to 5 μg of aldehyde loaded on the filter paper emitter. The limit of detection was determined to be 2.2 ng for this aldehyde. The method had a precision of 22%, relative standard deviation. The experiment was also implemented using a portable ion trap mass spectrometer.  相似文献   
48.
Fourteen common drugs of abuse were identified in spiked oral fluid (ng mL−1 levels), analyzed directly from medical swabs using touch spray mass spectrometry (TS-MS), exemplifying a rapid test for drug detection. Multiple stages of mass analysis (MS2 and MS3) provided identification and detection limits sought by international forensic and toxicological societies, Δ9-THC and buprenorphine excluded. The measurements were made using a medical swab as both the sampling probe and means of ionization. The adaptation of medical swabs for TS-MS analysis allows non-invasive and direct sampling of neat oral fluid. Data acquisition was rapid, seconds per drug, and MS3 ensured reliable identification of illicit drugs. The reported data were acquired to investigate (i) ionization of common drugs from commercial swabs, (ii) ion intensity over spray duration, and (iii) dynamic range, all as initial steps in development of a quantitative method. The approach outlined is intended for point-of-care drug testing using oral fluid in clinical applications as well as in situ settings, viz. in forensic applications. The proof-of-concept results presented will require extension to other controlled substances and refinement in analytical procedures to meet clinical/legal requirements.  相似文献   
49.
Diagnosis of human bladder cancer in untreated tissue sections is achieved by using imaging data from desorption electrospray ionization mass spectrometry (DESI-MS) combined with multivariate statistical analysis. We use the distinctive DESI-MS glycerophospholipid (GP) mass spectral profiles to visually characterize and formally classify twenty pairs (40 tissue samples) of human cancerous and adjacent normal bladder tissue samples. The individual ion images derived from the acquired profiles correlate with standard histological hematoxylin and eosin (H&E)-stained serial sections. The profiles allow us to classify the disease status of the tissue samples with high accuracy as judged by reference histological data. To achieve this, the data from the twenty pairs were divided into a training set and a validation set. Spectra from the tumor and normal regions of each of the tissue sections in the training set were used for orthogonal projection to latent structures (O-PLS) treated partial least-square discriminate analysis (PLS-DA). This predictive model was then validated by using the validation set and showed a 5% error rate for classification and a misclassification rate of 12%. It was also used to create synthetic images of the tissue sections showing pixel-by-pixel disease classification of the tissue and these data agreed well with the independent classification that uses histological data by a certified pathologist. This represents the first application of multivariate statistical methods for classification by ambient ionization although these methods have been applied previously to other MS imaging methods. The results are encouraging in terms of the development of a method that could be utilized in a clinical setting through visualization and diagnosis of intact tissue.  相似文献   
50.
Vapors of four chemical warfare agent (CWA) stimulants, 2-chloroethyl ethyl sulfide (CEES), diethyl malonate (DEM), dimethyl methylphosphonate (DMMP), and methyl salicylate (MeS), were detected, identified, and quantitated using a fully automated, field-deployable, miniature mass spectrometer. Samples were ionized using a glow discharge electron ionization (GDEI) source, and ions were mass analyzed with a cylindrical ion trap (CIT) mass analyzer. A dual-tube thermal desorption system was used to trap compounds on 50:50 Tenax TA/Carboxen 569 sorbent before their thermal release. The sample concentrations ranged from low parts per billion [ppb] to two parts per million [ppm]. Limits of detection (LODs) ranged from 0.26 to 5.0 ppb. Receiver operating characteristic (ROC) curves are presented for each analyte. A sample of CEES at low ppb concentration was combined separately with two interferents, bleach (saturated vapor) and diesel fuel exhaust (1%), as a way to explore the capability of detecting the simulant in an environmental matrix. Also investigated was a mixture of the four CWA simulants (at concentrations in air ranging from 270 to 380 ppb). Tandem mass (MS/MS) spectral data were used to identify and quantify the individual components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号