Ligands of the Gi protein-coupled adenosine A3 receptor (A3R) are receiving increasing interest as attractive therapeutic tools for the treatment of a number of pathological conditions of the central and peripheral nervous systems (CNS and PNS, respectively). Their safe pharmacological profiles emerging from clinical trials on different pathologies (e.g., rheumatoid arthritis, psoriasis and fatty liver diseases) confer a realistic translational potential to these compounds, thus encouraging the investigation of highly selective agonists and antagonists of A3R. The present review summarizes information on the effect of latest-generation A3R ligands, not yet available in commerce, obtained by using different in vitro and in vivo models of various PNS- or CNS-related disorders. This review places particular focus on brain ischemia insults and colitis, where the prototypical A3R agonist, Cl-IB-MECA, and antagonist, MRS1523, have been used in research studies as reference compounds to explore the effects of latest-generation ligands on this receptor. The advantages and weaknesses of these compounds in terms of therapeutic potential are discussed. 相似文献
In this work, the complexes formed between formamide and water were studied by means of the SAPT and AIM methods. Complexation leads to significant alterations in the geometries and electronic structure of formamide. Intermolecular interactions in the complexes are intense, especially in the cases where the solvent interacts with the carbonyl and amide groups simultaneously. In the transition states, the interaction between the water molecule and the lone pair on the amide nitrogen is also important. In all the complexes studied herein, the electrostatic interactions between formamide and water are the main attractive force, and their contribution may be five times as large as the corresponding contribution from dispersion, and twice as large as the contribution from induction. However, an increase in the resonance of planar formamide with the successive addition of water molecules may suggest that the hydrogen bonds taking place between formamide and water have some covalent character. 相似文献
A new stereoselective synthesis of lysophosphatidylcholines is reported. The synthesis is based upon (1) the use of 3-p-toluenesulfonyl-sn-glycerol to provide the stereocenter for construction of the optically active lysophospholipid molecule, (2) tetrahydropyranylation of the secondary alcohol function to achieve orthogonal protection of the sn-2- and sn-3-glycerol positions, and (3) elaboration of the phosphodiester headgroup using a 2-chloro-1,3,2-dioxaphospholane/trimethylamine sequence. In the course of developing the synthesis it has been discovered that methoxyacetate displacement of the sn-3-p-toluenesulfonate yields a reactive methoxyacetyl ester, which in turn can be selectively cleaved with methanol/tert-butylamine, while the ester group at the sn-1-position remains unaffected. The sequence has been shown to be suitable for preparation of spectroscopically labeled lysophosphatidylcholines. One of these compounds was readily converted to a double-labeled mixed-chain phosphatidylcholine applicable for real-time fluorescence resonance energy transfer (FRET) assay of lipolytic enzymes. In addition, the work led to new synthetic strategies based on chemoselective manipulation of the tosyl group in the presence of other base-labile groups such as FMOC derivatives that are often used for the protection of amino and hydroxyl groups in syntheses. 相似文献
Carbon nanotubes (CNTs) constitute an interesting material for nanomedicine applications because of their unique properties, especially their ability to penetrate membranes, to transport drugs specifically and to be easily functionalized. In this work, the energies of the intermolecular interactions of single-walled CNTs and the anticancer drug doxorubicin (DOX) were determined using the AMBER 12 molecular dynamics MM/PBSA and MM/GBSA methods with the aim of better understanding how the structural parameters of the nanotube can improve the interactions with the drug and to determine which structural parameters are more important for increasing the stability of the complexes formed between the CNTs and DOX. The armchair, zigzag, and chiral nanotubes were finite hydrogen-terminated open tubes, and the DOX was encapsulated inside the tube or adsorbed on the nanotube surface. Pentagon/heptagon bumpy defects and polyethylene glycol (PEG) nanotube functionalization were also studied. The best interaction occurred when the drug was located inside the cavity of the nanotube. Armchair and zigzag nanotubes doped with nitrogen, favored interaction with the drug, whereas chiral nanotubes exhibited better drug interactions when having bumpy defects. The π-π stacking and N-H…π electrostatic interactions were important components of the attractive drug-nanotube forces, enabling significant flattening of the nanotube to favor a dual strong interaction with the encapsulated drug, with DOX–CNT equilibrium distances of 3.1–3.9 Å. These results can contribute to the modeling of new drug-nanotube delivery systems.
Addition reactions in acidic media have been performed on the oxirane ring of unsubstituted, 2-methyl- and 2,3-dimethyl- substituted 2,3-epoxy-4a,12a-diaza-1,2,3,4,4a,5,12,12a-octahydronaphthacene-5,12-diones. These reactions proceed in a stereospecific way; the Furst-Plattner rule of 1,2-trans-diaxial ring-opening is obeyed as can be deduced from the nmr stereochemical study on the terminal piperidazine-ring moiety of the addition products. Acylation shift effects and 1,3-syn-diaxial interactions have been utilized to assist stereochemical assignments. The geometry of the ring corresponds in most cases to a chair slightly distorted by the sp2-sp3 character of the nitrogens. Some of the less highly substituted among the cleavage products show certain peculiarities in their spectra, and are presumed to be in conformational equilibrium. 相似文献
Fractions of humic acids, resolved by ultrafiltration of extracts from a sample of peat treated with alkaline pyrophosphate
solution, have been submitted to high-performance size-exclusion chromatography, with the aim of determining the molecular
weight distributions. Anomalous peaks, located at retention volumes higher than those corresponding to the main signal, are
present in the elution profiles relative to the lightest fractions. These peaks are more intense when using a refractive index
detector rather than a UV detector. Elemental analysis data for the lightest fractions suggested that the spurious peaks are
due to the presence of inorganic material. The hypothesis that pyrophosphate interacts with humic acids in the course of the
extraction has been confirmed by colorimetric determination of the phosphorus content in the different fractions. As a consequence,
the extraction procedure has been modified by using 0.1 mol/L NaOH as extractant.
The average molecular weights of the various fractions, following NaOH extraction, result in substantial agreement with those
obtained following pyrophosphate solution extraction (if the ‘pyrophosphate peaks’ present in the chromatographic profile
are discarded in the calculations).
Received: 18 November 1996 / Revised: 18 February 1997 / Accepted: 23 February 1997 相似文献
Doxorubicin (DOX), a recognized anticancer drug, forms stable associations with carbon nanotubes (CNTs). CNTs when properly functionalized have the ability to anchor directly in cancerous tumors where the release of the drug occurs thanks to the tumor slightly acidic pH. Herein, we study the armchair and zigzag CNTs with Stone–Wales (SW) defects to rank their ability to encapsulate DOX by determining the DOX-CNT binding free energies using the MM/PBSA and MM/GBSA methods implemented in AMBER16. We investigate also the chiral CNTs with haeckelite defects. Each haeckelite defect consists of a pair of square and octagonal rings. The armchair and zigzag CNT with SW defects and chiral nanotubes with haeckelite defects predict DOX-CNT interactions that depend on the length of the nanotube, the number of present defects and nitrogen doping. Chiral nanotubes having two haeckelite defects reveal a clear dependence on the nitrogen content with DOX-CNT interaction forces decreasing in the order 0N > 4N > 8N. These results contribute to a further understanding of drug-nanotube interactions and to the design of new drug delivery systems based on CNTs. 相似文献
Autologous bone grafts, used mainly in extensive bone loss, are considered the gold standard treatment in regenerative medicine, but still have limitations mainly in relation to the amount of bone available, donor area, morbidity and creation of additional surgical area. This fact encourages tissue engineering in relation to the need to develop new biomaterials, from sources other than the individual himself. Therefore, the present study aimed to investigate the effects of an elastin and collagen matrix on the bone repair process in critical size defects in rat calvaria. The animals (Wistar rats, n = 30) were submitted to a surgical procedure to create the bone defect and were divided into three groups: Control Group (CG, n = 10), defects filled with blood clot; E24/37 Group (E24/37, n = 10), defects filled with bovine elastin matrix hydrolyzed for 24 h at 37 °C and C24/25 Group (C24/25, n = 10), defects filled with porcine collagen matrix hydrolyzed for 24 h at 25 °C. Macroscopic and radiographic analyses demonstrated the absence of inflammatory signs and infection. Microtomographical 2D and 3D images showed centripetal bone growth and restricted margins of the bone defect. Histologically, the images confirmed the pattern of bone deposition at the margins of the remaining bone and without complete closure by bone tissue. In the morphometric analysis, the groups E24/37 and C24/25 (13.68 ± 1.44; 53.20 ± 4.47, respectively) showed statistically significant differences in relation to the CG (5.86 ± 2.87). It was concluded that the matrices used as scaffolds are biocompatible and increase the formation of new bone in a critical size defect, with greater formation in the polymer derived from the intestinal serous layer of porcine origin (C24/25). 相似文献
α-Trifluoromethyl chalcones were prepared and evaluated for their antiproliferative activities against androgen-independent prostate cancer cell lines as well as five additional types of human tumor cell lines. The most potent chalcone 5 showed superior antitumor activity in vivo with both oral and intraperitoneal administration at 3 mg/kg. Cell-based mechanism of action studies demonstrated that 5 induced cell accumulation at sub-G1 and G2/M phases without interfering with microtubule polymerization. Furthermore, several cancer cell growth-related proteins were identified by using chalcone 5 as a bait for the affinity purification of binding proteins. 相似文献