首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   974篇
  免费   52篇
  国内免费   7篇
化学   570篇
晶体学   5篇
力学   36篇
数学   259篇
物理学   163篇
  2023年   12篇
  2022年   21篇
  2021年   30篇
  2020年   27篇
  2019年   23篇
  2018年   15篇
  2017年   13篇
  2016年   53篇
  2015年   42篇
  2014年   48篇
  2013年   79篇
  2012年   86篇
  2011年   59篇
  2010年   35篇
  2009年   31篇
  2008年   52篇
  2007年   44篇
  2006年   42篇
  2005年   22篇
  2004年   34篇
  2003年   37篇
  2002年   22篇
  2001年   14篇
  2000年   13篇
  1999年   13篇
  1998年   13篇
  1997年   8篇
  1996年   4篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   7篇
  1991年   6篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   8篇
  1984年   12篇
  1983年   4篇
  1982年   6篇
  1981年   7篇
  1980年   4篇
  1979年   3篇
  1978年   4篇
  1977年   8篇
  1976年   5篇
  1974年   5篇
  1897年   2篇
  1893年   2篇
排序方式: 共有1033条查询结果,搜索用时 15 毫秒
991.
A hyperthermophilic α-amylase encoding gene from Pyrococcus woesei was transferred and expressed in Xanthomonas campestris ATCC 13951. The heterologous α-amylase activity was detected in the intracellular fraction of X. campestris and presented similar thermostability and catalytic properties with the native P. woesei enzyme. The recombinant α-amylase was found to be stable at 90 °C for 4 h and within the same period it retained more than 50% of its initial activity at 110 °C. Furthermore, X. campestris transformants produced similar levels of recombinant α-amylase activity regardless of the carbon source present in the growth medium, whereas the native X. campestris α-amylase production was highly dependent on starch availability and it was suppressed in the presence of glucose or other reducing sugars. On the other hand, xanthan gum yield, which appeared to be similar for both wild type and recombinant X. campestris strains, was enhanced at higher starch or glucose concentrations. Evidence presented in this study supports that X. campestris is a promising cell factory for the co-production of recombinant hyperthermophilic α-amylase and xanthan gum.  相似文献   
992.
Colloidal photocatalysts can utilize solar light for the conversion of CO2 to carbon-based fuels, but controlling the product selectivity for CO2 reduction remains challenging, in particular in aqueous solution. Here, we present an organic surface modification strategy to tune the product selectivity of colloidal ZnSe quantum dots (QDs) towards photocatalytic CO2 reduction even in the absence of transition metal co-catalysts. Besides H2, imidazolium-modified ZnSe QDs evolve up to 2.4 mmolCO gZnSe−1 (TONQD > 370) after 10 h of visible light irradiation (AM 1.5G, λ > 400 nm) in aqueous ascorbate solution with a CO-selectivity of up to 20%. This represents a four-fold increase in CO-formation yield and 13-fold increase in CO-selectivity compared to non-functionalized ZnSe QDs. The binding of the thiolated imidazolium ligand to the QD surface is characterized quantitatively using 1H-NMR spectroscopy and isothermal titration calorimetry, revealing that a subset of 12 to 17 ligands interacts strongly with the QDs. Transient absorption spectroscopy reveals an influence of the ligand on the intrinsic charge carrier dynamics through passivating Zn surface sites. Density functional theory calculations indicate that the imidazolium capping ligand plays a key role in stabilizing the surface-bound *CO2 intermediate, increasing the yield and selectivity toward CO production. Overall, this work unveils a powerful tool of using organic capping ligands to modify the chemical environment on colloids, thus enabling control over the product selectivity within photocatalyzed CO2 reduction.

A photocatalyst system consisting of ZnSe quantum dots modified with a thiolated imidazolium capping ligand for visible light-driven reduction of aqueous CO2 to CO is reported without the need for a metal complex co-catalyst.  相似文献   
993.
The structures of neutral boron clusters, B(11), B(16), and B(17), have been investigated using vibrational spectroscopy and ab initio calculations. Infrared absorption spectra in the wavelength range of 650 to 1550 cm(-1) are obtained for the three neutral boron clusters from the enhancement of their near-threshold ionization efficiency at a fixed UV wavelength of 157 nm (7.87 eV) after resonant absorption of the tunable infrared photons. All three clusters, B(11), B(16), and B(17), are found to possess planar or quasi-planar structures, similar to their corresponding anionic counterparts (B(n) (-)), whose global minima were found previously to be planar, using photoelectron spectroscopy and theoretical calculations. Only minor structural changes are observed between the neutral and the anionic species for these three boron clusters.  相似文献   
994.
The title compound features a five-membered Ru(5) ring embedded in a La(14) hexagonal wheel-like cage, an incommensurate combination of the two building units. A formal electron partition of (La(3+))(14)(Cl(-))(20)(Ru(5))(22-) results in a (Ru(5))(22-) ring isoelectronic to (Cd(5))(2-). However, computational studies show that there is significant electron back-donation from the Ru(5) ring to the La(14) wheel. This interaction strongly stabilizes the Ru(5) ring. The resistivity and magnetic susceptibility of the compound have also been investigated.  相似文献   
995.
996.
997.
A combination of phase-transfer and traditional alkylation strategies has been employed to synthesise sterically encumbered 1,3-di(cyclohexyl) and 1,3-di(tert-butyl) substituted indenes in multi-gram quantities. These indenyl ligands and sterically demanding alkyl cyclopentadienyl ligands have been used to prepare a series of [(η(7)-C(7)H(7))Zr(η(5)-L)] (L = Cp and Ind) complexes by straightforward salt metathesis between [(η(7)-C(7)H(7))ZrCl(tmeda)] and the corresponding sodium indenide or cyclopentadienide. All of these Zr complexes have been characterized by elemental analysis, NMR spectroscopy and single crystal X-ray diffraction. The structural information derived from these studies was employed to evaluate the steric demand of these ligands in a realistic manner.  相似文献   
998.
The frustrated Lewis pair B(C(6)F(5))(3)/P(o-tolyl)(3) (4a) reacts with 4,6-decadiyne to give the trans-1,2-addition product 5. In contrast, the B(C(6)F(5))(3)/P(t)Bu(3) FLP (4b) reacts with this substrate to give the trans-1,4-adduct trans-6. The cumulene trans-6 undergoes trans-/cis-isomerization upon photolysis to give a ca. 1:1 trans-6/cis-6 mixture. The FLP 4b reacts with 2,6-hexadiyne at r.t. to yield a ca. 4:1 mixture of their trans-1,2- and trans-1,4-addition products (7,8). DFT calculations showed that the zwitterionic 1,4-addition products are favored under thermodynamic control. Thermolysis of the kinetic trans-1,2-addition product (7) (80 °C, bromobenzene) does not lead to the thermodynamically favored 1,4-isomer (8), but instead elimination of isobutylene occurs to the formal trans-1,2-adduct (9) of the B(C(6)F(5))(3)/PH(t)Bu(2) pair. Compounds 5, 6, 7, 8, 9 were analyzed by X-ray diffraction.  相似文献   
999.
The magnetic properties of the porous metal-organic complex Co(bpy)(1.5)(NO(3))(2) (bpy = 4,4'-bipyridine), investigated by SQUID magnetometry, EPR and heat capacity measurements, are reported. The tongue-and-groove structure of this complex is formed by the assembly of T-shaped building blocks, where each Co is bound to three bpy ligands. Co(ii) is hepta-coordinated by three N atoms from the bpy units, and four O atoms from two nitrate groups. Experimental results showed a large crystal field effect induced anisotropy with a zero field splitting of Δ = 198 K between the ground and excited Kramers doublets, a factor of two larger than previously reported values in Co(ii) hepta-coordinated complexes. EPR revealed orthorhombic crystal field anisotropy, with gyromagnetic principal values of g(1)(*) = 6.1, g(2)(*) = 4.2 and g(3)(*) = 2.2, in an S(*) = 1/2 effective spin on the ground state Kramers doublet. Ab initio simulations allowed us to assign the anisotropy easy axis of magnetization to the binary symmetry axis of the molecule, aligned with the Co-N apical direction of the T-block.  相似文献   
1000.
The crystal structures of two pentacyanido(L) ferrate(III) complexes, [P(C6H5)4]2[Fe(CN)5(prz)]·4H2O 1, [P(C6H5)4]2[Fe(CN)5(4,4′-bipy)]·3H2O 2, have been solved. Within the two complex anions the iron atoms are hexacoordinated by five cyanido ligands, the sixth position being occupied by the nitrogen atom arising from pyrazine and, respectively, 4,4′-bipyridine. The electrochemical properties of compounds 1, 2 and of the azido derivative, (Ph4As)2[Na(H2O)4][Fe(CN)5(N3)] 3, have been investigated by cyclic voltammetry. A relatively complicated redox behavior of these complexes was found, due especially to the electron transfer involving the central metallic ion that changes reversibly its oxidation state (FeIII/FeII redox site) and also to the coligand (4,4′-bipyridine, pyrazine or azide) which intervenes in a distinct electron transfer. The experimental data have been rationalized through DFT calculations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号