首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   700篇
  免费   14篇
  国内免费   10篇
化学   494篇
力学   9篇
数学   62篇
物理学   159篇
  2021年   9篇
  2020年   9篇
  2019年   15篇
  2018年   6篇
  2016年   10篇
  2015年   5篇
  2014年   10篇
  2013年   19篇
  2012年   30篇
  2011年   37篇
  2010年   14篇
  2009年   18篇
  2008年   17篇
  2007年   22篇
  2006年   23篇
  2005年   21篇
  2004年   15篇
  2003年   11篇
  2002年   18篇
  2001年   13篇
  2000年   9篇
  1999年   14篇
  1998年   7篇
  1997年   5篇
  1996年   11篇
  1995年   10篇
  1994年   18篇
  1993年   7篇
  1992年   13篇
  1991年   8篇
  1990年   18篇
  1988年   11篇
  1987年   8篇
  1986年   12篇
  1985年   15篇
  1984年   17篇
  1983年   14篇
  1982年   13篇
  1981年   10篇
  1980年   7篇
  1979年   16篇
  1978年   24篇
  1977年   20篇
  1976年   13篇
  1975年   17篇
  1974年   6篇
  1973年   13篇
  1971年   4篇
  1968年   4篇
  1943年   4篇
排序方式: 共有724条查询结果,搜索用时 31 毫秒
41.
( all-E)-12′-Apozeanthinol, Persicaxanthine, and Persicachromes Reexamination of the so-called ‘persicaxanthins’ and ‘persicachromes’, the fluorescent and polar C25-apocarotenols from the flesh of cling peaches, led to the identification of the following components: (3R)-12′-apo-β-carotene-3,12′-diol ( 3 ), (3S,5R,8R, all-E)- and (3S,5R,8S,all-E)-5,8-epoxy-5,8-dihydro-12′-apo-β-carotene-3,12′-diols (4 and 5, resp.), (3S,5R,6S,all-E)-5,6-epoxy-5,6-dihydro-l2′-apo-β-carotene-3,12′-diol =persicaxanthin; ( 6 ), (3S,5R,6S,9Z,13′Z)-5,6-dihydro-12′apo-β-carotene-3,12′-diol ( 7 ; probable structure), (3S,5R,6S,15Z)-5,6-epoxy-5,6-dihydro-12′-apo-β-carotene-3,12′-diol ( 8 ), and (3S,5R,6S,13Z)-5,6-epoxy-5,6-dihydro-12′-apo-β-carotene-3,12′-diol ( 9 ). The (Z)-isomers 7 – 9 are very labile and, after HPLC separation, isomerized predominantly to the (all-E)-isomer 6 .  相似文献   
42.
Carotenoids from Hips of Rosa pomifera: Discovery of (5Z)-Neurosporene; Synthesis of (3R, 15Z)-Rubixanthin Extensive chromatographic separations of the mixture of carotenoids from ripe hips of R. pomifera have led to the identification of 43 individual compounds, namely (Scheme 2): (15 Z)-phytoene (1) , (15 Z)-phytofluene (2) , all-(E)-phytofluene (2a) , ξ-carotene (3) , two mono-(Z)-ξ-carotenes ( 3a and 3b ), (6 R)-?, ψ-carotene (4) , a mono-(Z)-?, ψ-carotene (4a) , β, ψ-carotene (5) , a mono-(Z)-β, ψ-carotene (5a) , neurosporene (6) , (5 Z)-neurosporene (6a) , a mono-(Z)-neurosporene (6b) , lycopene (7) , five (Z)-lycopenes (7a–7e) , β, β-carotene (8) , two mono-(Z)-β, β-carotenes (probably (9 Z)-β, β-carotene (8a) and (13 Z)-β, β-carotene (8b) ), β-cryptoxanthin (9) , three (Z)-β-cryptoxanthins (9a–9c) , rubixanthin (10) , (5′ Z)-rubixanthin (=gazaniaxanthin; 10a ), (9′ Z)-rubixanthin (10b) , (13′ Z)- and (13 Z)-rubixanthin (10c and 10d , resp.), (5′ Z, 13′ Z)- or (5′ Z, 13 Z)-rubixanthin (10e) , lutein (11) , zeaxanthin (12) , (13 Z)-zeaxanthin (12b) , a mono-(Z)-zeaxanthin (probably (9 Z)-zeaxanthin (12a) ), (8 R)-mutatoxanthin (13) , (8 S)-mutatoxanthin (14) , neoxanthin (15) , (8′ R)-neochrome (16) , (8′ S)-neochrome (17) , a tetrahydroxycarotenoid (18?) , a tetrahydroxy-epoxy-carotenoid (19?) , and a trihydroxycarotenoid of unknown structure. Rubixanthin (10) and (5′ Z)-rubixanthin (10a) can easily be distinguished by HPLC. separation and CD. spectra at low temperature. The synthesis of (3 R, 15 Z)-rubixanthin (29) is described. The isolation of (5 Z)-neurosporene (6a) supports the hypothesis that the ?-end group arises by enzymatic cyclization of precursors having a (5 Z)- or (5′ Z)-configuration.  相似文献   
43.
Coleons C, D, I, I′, obtained from a Madagascan Plectranthus sp. nov.. Interconversion of cis- and trans-A/B-6,7-Diketoditerpenes. Fairly large amounts of Coleons C and D, as well as Coleons I and I′ (3-O-formyl derivative of Coleon I) can bc isolated from the orange glands of an unclassified North Madagascan Plectranthus sp. A reversible transformation of cis- and trans-A/B-6,7-dioxo-abietane via its diosphenol has been achieved for the first time. CD.-Spectra of these compounds are presented. Hydrogenolysis of Coleon D leads to 6β,16-dihydroxy-royleanone.  相似文献   
44.
Partial Synthesis of Grandidones A, 7-Epi-A, B, 7-Epi-B, C, D and 7-Epi-D, from 14-Hydroxytaxodione Oxydative addition of coleon U ( 6 ) to 14-hydroxytaxodione ( 5 ) in the presence of Fétizon's reagent mainly leads to grandidone A ( 1a ) and 7-epigrandidone A ( 1b ) (ca. 15:1), whereas coleon V ( 7 ) and 5 under the same conditions yield grandidone B ( 2a ) and 7-epigrandidone B ( 2b ) (ca. 3:1). Dimerization of 14-hydroxytaxodione ( 5 ) gives grandidone C ( 3 ; ca. 40%), grandidone D ( 4a ; ca. 50%) and 7-epigrandidone D ( 4b ; ca. 10%). All these compounds obtained by partial synthesis are in every respect identical with the natural products, thus establishing their absolute configurations. The thermal transformation of grandidone C ( 3 ) to grandidone D ( 4a )/7-epigrandidone D ( 4b ) and interconversions of 4a and 4b were achieved. Oxydative addition of coleon U ( 6 ) to 14-hydroxytaxodione ( 5 ) in the presence of Fétizon's reagent mainly leads to grandidone A ( 1a ) and 7-epigrandidone A ( 1b ) (ca. 15:1), whereas coleon V ( 7 ) and 5 under the same conditions yield grandidone B ( 2a ) and 7-epigrandidone B ( 2b ) (ca. 3:1). Dimerization of 14-hydroxytaxodione ( 5 ) gives grandidone C ( 3 ; ca. 40%), grandidone D ( 4a ; ca. 50%) and 7-epigrandidone D ( 4b ; ca. 10%). All these compounds obtained by partial synthesis are in every respect identical with the natural products, thus establishing their absolute configurations. The thermal transformation of grandidone C ( 3 ) to grandidone D ( 4a )/7-epigrandidone D ( 4b ) and interconversions of 4a and 4b were achieved. Oxydative addition of coleon U ( 6 ) to 14-hydroxytaxodione ( 5 ) in the presence of Fétizon's reagent mainly leads to grandidone A ( 1a ) and 7-epigrandidone A ( 1b ) (ca. 15:1), whereas coleon V ( 7 ) and 5 under the same conditions yield grandidone B ( 2a ) and 7-epigrandidone B ( 2b ) (ca. 3:1). Dimerization of 14-hydroxytaxodione ( 5 ) gives grandidone C ( 3 ; ca. 40%), grandidone D ( 4a ; ca. 50%) and 7-epigrandidone D ( 4b ; ca. 10%). All these compounds obtained by partial synthesis are in every respect identical with the natural products, thus establishing their absolute configurations. The thermal transformation of grandidone C ( 3 ) to grandidone D ( 4a )/7-epigrandidone D ( 4b ) and interconversions of 4a and 4b were achieved. Oxydative addition of coleon U ( 6 ) to 14-hydroxytaxodione ( 5 ) in the presence of Fétizon's reagent mainly leads to grandidone A ( 1a ) and 7-epigrandidone A ( 1b ) (ca. 15:1), whereas coleon V ( 7 ) and 5 under the same conditions yield grandidone B ( 2a ) and 7-epigrandidone B ( 2b ) (ca. 3:1). Dimerization of 14-hydroxytaxodione ( 5 ) gives grandidone C ( 3 ; ca. 40%), grandidone D ( 4a ; ca. 50%) and 7-epigrandidone D ( 4b ; ca. 10%). All these compounds obtained by partial synthesis are in every respect identical with the natural products, thus establishing their absolute configurations. The thermal transformation of grandidone C ( 3 ) to grandidone D ( 4a )/7-epigrandidone D ( 4b ) and interconversions of 4a and 4b were achieved.  相似文献   
45.
Sakurada's equation and fundamental kinetic laws were applied to the heterogeneous cyanoethylation of cellulose, performed by reacting fiber with liquid acrylonitrile, with sodium hydroxide as the catalyst. The data fit Sakurada's equation better at higher temperatures; deviation occurs at the initial stage, and the rate of reaction falls abruptly at a later stage. The degree of substitution at which the abrupt rate change occurred decreased as the temperature increased from 31 to 60°C. and also as the crystallinity of the fiber decreased. Diluting the reagent with different solvents decreased the rate of reaction and changed its transition points, but did not change the essential nature of the reaction, each segment of which fits Sakurada's equation very well. A uniform distribution of the catalyst (sodium hydroxide) throughout the fiber was attempted, and then the reaction was studied at 50°C. Diffractograms of the samples provided further evidence that the position of the rate change is associated with the change of cellulose (I) crystalline structure. Approximate energy of activation has been calculated, from the specific rate constants, between 31 and 40°C. as 10.6 kcal. and between 45 and 50°C. as 16.7 kcal. At other temperatures the determination was handicapped, due to temperature dependence of the order of reaction. An empirical relation between the constants of Sakurada's equation and the reaction temperature has been sought and correlated with the Arrhenius equation. Energies of activation, determined from this relationship, have been found to be very close to the above values. The change of order of reaction with temperature suggests that the reaction is affected by diffusion and the mechanism is interpreted as a diffusion-controlled reaction where hydrogen bonds play a significant role in diffusion.  相似文献   
46.
Carotenoids in petals of Rosa foetida The petals of Rosa foetida, HERRM ., a species of prime importance in the history of breeding true yellow garden roses, have been analysed for carotenoids for the first time. The following components were identified: β-carotene ( 1 , 4,5%), lutein ( 2 , 8%), zeaxanthin ( 3 , 17,4%), auroxanthin ( 4 , 30,8%), luteoxanthin ( 5 , 21,9%), violaxanthin ( 6 , 9,2%) and neochrome ( 7 , 4,1%). Not identified carotenoids (4,1%) contained probably mutatoxanthin, antheraxanthin and apocarotenals. Thus the brillant yellow colour of R. foetida flowers is due mainly to carotenoid epoxides.  相似文献   
47.
Syntheses of Carotenes with ψ-End Groups and (Z)-Configuration at Terminal Conjugated Double Bonds Five carotenes bearing (5Z)-ψ-end groups were synthesized and carefully characterized: (5Z)-lycopene ( 6 ), (5Z5′Z)-lycopene ( 7 ), (5′Z)-neurosporene ( 8 ), (5′Z)-β,ψ-carotene ( 12 ), and (5′Z)-ε,ψ-carotene ( 14 ).  相似文献   
48.
49.
The central theme of this article is the approximation of lattice-ordered groups (l-groups) first by Specker groups and, subsequently, by the so-calledS-discretel-groups. The sense of these approximations is made precise via the notion of a signature, defined below, and by that ofa *-subgroups. Sample result: ifG is a projectablel-group then it has anl-subgroupH which is Specker and for which the mapPPH defines a boolean isomorphism between the algebras of polars ofG andH.Presented by L. Fuchs.This article was written while this author was a Stouffer Visiting Professor at the University of Kansas. He wishes to thank the members of the Mathematics Department of that institution for their hospitality.  相似文献   
50.
A convenient two-step homologation of both aliphatic and aromatic ketones to the corresponding carboxylic acid has been developed. First ketones were converted to epoxynitriles with the Darzens reaction. Second, a Lewis acid mediated rearrangement of these epoxynitriles with lithium bromide was achieved to give homologated secondary alkanoic acids (as well as aryl-alkanoic) in good yields. The mechanism and the scope of the rearrangement reaction were investigated. This strategy constitutes a two-step homologation of ketones to secondary carboxylic acids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号