首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   2篇
化学   105篇
晶体学   3篇
力学   1篇
数学   8篇
物理学   16篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2013年   5篇
  2012年   13篇
  2011年   15篇
  2010年   6篇
  2009年   4篇
  2008年   10篇
  2007年   7篇
  2006年   8篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   3篇
  1988年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1970年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有133条查询结果,搜索用时 93 毫秒
101.
The regioselectivity of dipolar cycloadditions of mesitonitrile oxide to various dipolarophiles in supercritical carbon dioxide can be tuned by changes in density, the magnesium bromide-mediated cycloaddition to pent-1-en-3-ol proceeding with higher stereoselectivity than in most conventional solvents.  相似文献   
102.
α-Isobufalin
  • 1 Systematic names are given at the titles of the Exper. Part.
  • ( 1 ) and β-isoresibufogenin ( 3 ) have been synthesized from testosterone by a method which features a novel oxidative furan to pyrone transformation.  相似文献   
    103.
    Synthesis of a novel class of 7-amino-3-pyrimidinyl-pyrazolo[1,5-a]pyridine antiherpetic compounds is described. The synthetic methodology is designed to allow for rapid analog synthesis around the C-3 and C-7 positions of the pyrazolo[1,5-a]pyridine. The 7-chloropyrazolo[1,5-a]pyridine D, produced through an azirine rearrangement, served as a key building block. Two complementary methodologies for construction of the C-3 pyrimidine are described. These methods include the development of a novel cyclization utilizing alkynyl ketones or enones to give highly substituted pyrimidines. The outlined strategies facilitated late stage manipulation of either the C-3 or C-7 positions providing flexibility for rapid analog synthesis.  相似文献   
    104.
    C-Aryl-N-phenylnitrones are transformed to a mixture of azoxybenzene and aryl aldehydes when treated with a mixture of Baker’s yeast and sucrose in pH = 6.0 phosphate buffer medium at 32 °C.  相似文献   
    105.
    The connection between an experimentally measured Bethe surface and certain optical sum rules is discussed. The simplest procedure for constructing optical sums involves summing (integrating) the generalized oscillator strength over energy loss at a fixed scattering angle. This involves an approximation and an error formula is developed to estimate the magnitude of the correction involved. The approximation is shown to be extremely accurate in the limit of high incident energy and large momentum transfer. The sum S(?1,K) which is simply related to the X-ray incoherent scattering factor is found to have a small first order correction in the case of electron scattering from He with 25 keV electrons even at angles as small as 1°.  相似文献   
    106.
    107.
    François Gabbaï, Cameron Jones and Connie Lu introduce the Chemical Science themed collection on the topic of main group elements in polynuclear complexes.

    Efforts towards the incorporation of main group elements in polynuclear motifs or in the coordination sphere of transition metals have been a prevalent theme of coordination chemistry, and one that has delivered notable advances in the area of structure and bonding. In the past decade, this field has witnessed an increased emphasis on the influence of the main group moiety over the reactivity or physical properties of the resulting constructs. Through a collection of both invited and selected articles, this themed issue puts the spotlight on this developing field, while at the same time illustrating far-reaching applications in the areas of small molecule activation, catalysis and molecular magnetism.A number of papers in this themed issue highlight the significant recent progress that has been made in the development of homo- and heterometallic systems incorporating s- and p-block elements, both in low oxidation states (often element–element bonded) and normal oxidation states. These have found particular use as low toxicity, earth abundant alternatives to late transition metal complexes in stoichiometric and catalytic transformations of small molecule substrates to value added products. This theme is introduced in primary articles dealing with the reactivity of magnesium-based systems. As shown by Jones, Maron and co-workers, magnesium(i) dimers (LMg–MgL, L = β-diketiminate) are activated by coordination of simple Lewis bases, and are subsequently able to reductively couple carbon monoxide to form the deltate and transient ethenediolate dianions (CnOn2−, n = 3 and 2, respectively; DOI: 10.1039/D0SC00836B). In another contribution, β-diketiminato-stabilised magnesium diboronates are shown by Hill, McMullin and co-workers to act as rare “masked” sources of nucleophilic boryl anions for the synthetic transformation of imines (DOI: 10.1039/C9SC02087J). These two papers integrate with the content of two reviews that highlight the unique structures and reactivity of polynuclear complexes containing low valent group 2, 13 and 14 elements. One of these reviews, by Inoue and co-workers, focuses on the structures of ditetrelenes (R2EII Created by potrace 1.16, written by Peter Selinger 2001-2019 EIIR2, E = group 14 element) and ditetrelynes (REI Created by potrace 1.16, written by Peter Selinger 2001-2019 EIR), and their remarkable reactivity towards small molecules (DOI: 10.1039/D0SC03192E). Another review by Crimmin and co-workers explores the role that magnesium(i) and aluminium(i) reductants play in C–H bond activation reactions, and the synergy that may arise when the main group reagent is combined with a transition metal (DOI: 10.1039/D0SC03695A). Showcasing the value that s-block metals may display in their normal valence, Williams and coworkers describe macrocyclic MgII/ZnII heterodinuclear complexes as highly effective catalysts for epoxide/CO2 ring opening co-polymerization (DOI: 10.1039/C9SC00385A). The broader significance of this concept is developed in a review on heterobimetallic complexes containing s-block metals, in which Hevia and her co-worker highlight the unique ability of such complexes to support cooperative catalysis (DOI: 10.1039/D0SC05116K). The Lewis acidity of s-block cations can also be harnessed to manipulate the covalency of metal–ligand interactions, as elegantly demonstrated by Arnold, Love, Vitova, Schreckenbach and co-workers, who investigate a series of uranyl(v) complexes featuring U Created by potrace 1.16, written by Peter Selinger 2001-2019 O–E motifs (E = group 1 or 2 element, DOI: 10.1039/C8SC05717F).Reduced polynuclear main group complexes can also provide new platforms for the discovery of atypical reactivity as illustrated by Kong and co-workers, who report mono-base-stabilized 1,2-diboranylidenehydrazines, a set of compounds that feature an unprecedented BNN-1,3-dipole that readily adds to arenes or small molecules such as CO2 (DOI: 10.1039/D0SC02162H). In keeping with the theme of reactive diboron-containing units, Braunschweig and co-workers show in another captivating report that B–B triply-bonded diborynes can add to diboranes to afford B4 chains, a transformation that could pave the way to new polymers with polyboron units in the main chain (DOI: 10.1039/C9SC02544H). The synthetic potential offered by low oxidation state main group elements comes to the fore in two additional reports, both dealing with Si6 clusters. In the first one, Scheschkewitz and co-workers show that these silicon clusters can be functionalised with tetrylene substituents, and can act as ligands towards group 9 metal fragments, yielding complexes which act as catalysts for alkene isomerisations (DOI: 10.1039/D0SC02861D). A second report by Lips and co-workers describes highly unsaturated and structurally dynamic Si6R4 species (R = amide) with exposed silicon vertices (DOI: 10.1039/D0SC01427C). Exposed silicon moieties can also be appended to classical ligands as demonstrated by Roesky and co-workers who report on cyclopentadienyl ligands substituted by a silylene (R2Si:). These ligands not only act as two-electron Si donors towards transition metal fragments but also undergo isomerization or deprotonation reactions leading to sila-fulvenes (DOI: 10.1039/D0SC04174B). Reduced group 14 elements can also be directly incorporated in the five-membered ring of cyclopentadienyl-like ligands as illustrated by Müller, Albers and co-workers in a contribution dealing with the germacyclopentadienediyl [K2(:GeC4R4)] as an η5-ligand and its conversion into the first germaaluminocene, [Cp*Al(η5-:GeC4R4)] (DOI: 10.1039/D0SC00401D).As stated in the introductory paragraph, positioning main group elements in the coordination sphere of transition metals provides access to unusual reactivities, as in a contribution by Ozerov and co-workers (DOI: 10.1039/D0SC04748A) who demonstrate the reversible addition of ethylene to a boryl-based bis(phosphine) iridium pincer complex. A unique aspect of this contribution is the concomitant participation of the iridium and boron centres in the coordination of the hydrocarbon ligand. The ability of boron to cooperate with an adjacent transition metal centre is again a leading theme in two additional contributions selected for inclusion in this issue. The first one concerns the reversible addition of H2 across an Ni–B bond, as elegantly documented by Rodríguez, Lledós and co-workers (DOI: 10.1039/D0SC06014C), who also used a boryl-based pincer as a supporting ligand. Exploiting the somewhat counter-intuitive reality that gold is more electronegative than boron, Yamashita, Lin and co-workers show that gold(i) diarylboryl complexes react as gold-based nucleophiles with organic reagents bearing C Created by potrace 1.16, written by Peter Selinger 2001-2019 O and C Created by potrace 1.16, written by Peter Selinger 2001-2019 N bonds (DOI: 10.1039/D0SC05478J). The unique reactivity of late transition metal–boryl linkages pervades in another contribution by Conejero, Lledós and co-workers who detail the highly choreographed addition of boranes such as HBpin and HBcat to a cationic, T-shaped, cyclometallated Pt(ii) bis-carbene complex (DOI: 10.1039/D0SC05522K). Isolated species include σ-BH PtII complexes, en route to the formation of T-shaped PtII bis-carbene complexes. Last, Tilley, Eisenstein and co-workers remind us of the importance of main group hydrides in catalysis in a contribution that pinpoints the intermediacy of dinuclear nickel–silyl species in an alkene hydrosilylation reaction mediated by a cationic nickel complex (DOI: 10.1039/D0SC00997K).Within the theme of heterometallic cooperativity, we highlight three articles where group 13 elements were introduced into transition metal complexes to promote small-molecule activation. In each report, a unique ligand design is used to juxtapose the transition metal centre with the group 13 element(s). Szymczak and co-workers appended two Lewis acidic borane groups to a pincer ligand via flexible linkers. The pendant boranes were critical for the stabilization of a rare high-spin FeII dihydride complex by forging Fe–H → B interactions (DOI: 10.1039/C9SC00561G). Upon exposure to an arylisocyanide, a good π-acid, the reductive elimination of H2 ensued to form the iron(0) complex. Such a step is reminiscent of the E4 intermediate in nitrogenase, which is proposed to release the obligatory H2 equivalent upon binding of N2 [see Chem. Rev., 2014, 114, 4041]. Envisioning a more active role for boranes, Harman and co-workers use the diboraanthracene platform, whose redox flexibility and dynamic Lewis acidity can be orchestrated to promote reactivity at the bound transition metal (DOI: 10.1039/C9SC02792K). The authors isolate a key Au borohydride intermediate that reduces CO2 to formate, and close a synthetic cycle from CO2 to formic acid using only proton and electron equivalents. Moving down the group 13 to the heavier congeners, Lu and co-workers show that the choice of the heavy group 13 ion (Al, Ga, or In) that is directly appended to a nickel(0) centre can significantly tune the Ni electronics (DOI: 10.1039/C9SC02018G). In comparing a triad of non-classical Ni(η2-H2) adducts, the identity of the group 13 ion was found to perturb the free energy and activation energy of H2 binding by ∼5 kcal mol−1. Lastly, in a timely review, Takaya details the growing momentum of using main group/metalloid complexes as supporting ligands for transition metal-based catalysis (DOI: 10.1039/D0SC04238B). Takaya’s review presents illustrative examples to showcase the diverse main group elements (groups 13–15) and strategies that are being harnessed for transition metal catalysis.Moving down the periodic table to the f-elements, several articles explore heterometallic lanthanide and actinide complexes that fundamentally challenge our understanding of bonding and electronic structure. Using mixed arene π-ligands, Liddle and co-workers isolated an unusual bent Th “sandwich” complex that is stitched by K+ ions into a tetrathorium cluster (DOI: 10.1039/D0SC02479A). Diaconescu, Huang and co-workers report inverted sandwich complexes of Sm and Y featuring a bridging biphenyl ligand and bridging K+ ions (DOI: 10.1039/D0SC03555F). Depending on the lanthanide element, these inverted sandwiches feature SmIII–arene–SmIII or YbII–arene–K+ bonding interactions, where the biphenyl ligand is formally tetraanionic or dianionic, respectively. Freedman and co-workers conducted an in-depth study on the electronic structures of Sn-based heterometallics that contain a direct bond between Sn and a first-row transition metal that is varied from Mn to Ni (DOI: 10.1039/D0SC03777J). The authors make a striking comparison between the high-spin configurations of the 3d ions and those of typical Ln coordination complexes, wherein the coordinate bonds are more ionic. They rationalize that the Sn group behaves as an inverted, weak-field ligand due to the large energy mismatch between the Sn 5s/5p and 3d atomic orbitals [see Chem. Rev., 2016, 116, 8173]. Controlling spin states is only one of several requisites for the design of single molecule magnets (SMMs). Layfield, Mansikkamäki and co-workers report a triad of dinuclear dysprosium complexes, where the exogenous borohydride donor is varied in both number and coordination (terminal to bridging) (DOI: 10.1039/D0SC02033H). The authors observed a favourable increase in the effective energy barrier for a dinuclear dysprosium complex with a Dy : BH4 ratio of 2 : 1. Lastly, Nippe, Chibotaru and co-workers explore magneto-structural relationships in a series of trigonal prismatic LnIII complexes (Gd to Lu) that are scaffolded by three doubly deprotonated ferrocene (FeCp2)2− ligands and capped by Li+ ions (DOI: 10.1039/D0SC01197E). By virtue of its size and axis of anisotropy, the authors were able to engender SMM behaviour for the HoIII complex. The authors demonstrate that the Ln size and the nature of the Li+ solvate both influence the twist angle, where the ideal trigonal prism geometry (twist angle of 0°) results in the large anisotropy that is conducive to SMM behaviour.To illustrate the diversity of the field, this themed issue also highlights several additional contributions dealing with atypical phosphorus-containing ligands. For example, Scheer and co-workers show that the four-membered cyclo-P4 ligand of organometallic tantalum complexes can be used as a square building block for the construction of molecular capsules upon combination with silver cations and an appropriate template (DOI: 10.1039/D0SC03437A). Two additional contributions document recent trends at the confluence of traditional organophosphorus chemistry and coordination chemistry. Gessner and co-workers review the unique properties of phosphorus ylides and their ability to stabilize low-valent main group species, leading to the formation of new main group ligands for transition metal-based catalysis (DOI: 10.1039/D0SC03278F). The second contribution comes from Normand, Sosa Carrizo and co-workers who decipher the ambiphilic properties of bis(iminophosphoranyl)phosphide ligands and suggest that they be regarded as containing a triphosphenium coordinating unit (DOI: 10.1039/D0SC04736H).This themed issue was assembled with the intent of spotlighting the role played by main group elements in polynuclear complexes. We hope that those reading these articles will appreciate the topical diversity of this research field, its relevance to various areas of chemistry, and the numerous future research opportunities it presents.  相似文献   
    108.
    Dialkyl esters of 2-acyloxyalkylphosphonic acids, RCH(OAc)CH2PO3R′2, undergo thermolytic fragmentation to an alkene RCHCH2, a new ester AcOR′, and an alkyl metaphosphate R′OPO2. The reaction represents a new type of a process in which a metaphosphate species is generated from a neutral precursor and involves alkyl group (R′) migration as a prerequisite for the reaction. Mechanistic studies indicate that the reaction involves interaction between the phosphoryl group and the electrophilic center of the Ac group, followed by the intramolecular dealkylation of the P O R′ function and the subsequent fragmentation of the intermediate.  相似文献   
    109.
    Laser-induced breakdown spectroscopy (LIBS) was applied to the analysis of simulant slurry samples used in the vitrification process of liquid radioactive wastes. A spectroscopic analysis was performed by two different detection systems: Czerny-Turner spectrometer coupled with intensified diode array detector (IDAD) and an Echelle spectrometer with intensified charge coupled device (ICCD). For the Czerny-Turner detection system, the normalized intensity method, which is the normalization of the atomic emission intensity by the released whole plasma emission area intensity, was employed to improve the reproducibility of LIBS signals. The Echelle detection system showed a high efficiency in simultaneous multi-element detection and determination of the physical quantities of the simulant.  相似文献   
    110.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号