首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   0篇
  国内免费   1篇
化学   14篇
数学   7篇
物理学   101篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2014年   3篇
  2013年   5篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   6篇
  2005年   2篇
  2004年   6篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   7篇
  1997年   2篇
  1996年   2篇
  1995年   5篇
  1994年   9篇
  1993年   3篇
  1992年   7篇
  1991年   3篇
  1990年   10篇
  1989年   8篇
  1988年   5篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1976年   1篇
  1974年   1篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
101.
102.
103.
104.
105.
106.
Colloidal iron oxides play an important role as magnetic resonance imaging (MRI) contrast agents. The superparamagnetic particles actually used are constituted by solid cores (diameter of 5-15 nm), generally coated by a thick polysaccharidic layer (hydrodynamic radii of 30-100 nm), and formulated by direct coprecipitation of iron salts in the presence of polymeric material. To better control the synthesis, we attempted to formulate new stable uncoated superparamagnetic nanoparticles. Colloids were generated by coprecipitation of an aqueous solution of iron salts and tetramethylammonium hydroxide (TMAOH) solution. The influence of parameters such as media composition, iron media, injection fluxes, Fe and TMAOH concentrations, temperature, and oxygen on size, magnetic and magnetic resonance relaxometric properties, and colloidal stability of particles were evaluated. We have determined the relative importance of these parameters as well as the optimal conditions for obtaining uncoated stable particles with an average size of 5 nm and interesting relaxivities. The interpretation of the observed limits takes into account diffusibilities of reactants and product, feeding rates of reactants, and surface properties of nanoparticles. A model of synthesis, related to spontaneous emulsification of suspensions, is proposed. Copyright 1999 Academic Press.  相似文献   
107.
To understand the origin of the dynamical transition, between high-temperature exponential relaxation and low-temperature nonexponential relaxation, that occurs well above the static transition in glassy systems, a frustrated spin model, with and without disorder, is considered. The model has two phase transitions, the lower being a standard spin glass transition (in the presence of disorder) or fully frustrated Ising (in the absence of disorder), and the higher being a Potts transition. Monte Carlo results clarify that in the model with (or without) disorder the precursor phenomena are related to the Griffiths (or Potts) transition. The Griffiths transition is a vanishing transition which occurs above the Potts transition and is present only when disorder is present, while the Potts transition which signals the effect due to frustration is always present. These results suggest that precursor phenomena in frustrated systems are due either to disorder and/or to frustration, giving a consistent interpretation also for the limiting cases of Ising spin glass and of Ising fully frustrated model, where also the Potts transition is vanishing. This interpretation could play a relevant role in glassy systems beyond the spin systems case.  相似文献   
108.
Sheared granular suspensions can either flow or be jammed. They show as well a ‘melting’ transition: partially ordered flowing states are found which can be melted into fully disordered arrangements of grains by sufficient shear. While these are well documented phenomena, the underlying mechanisms and their control parameters are still far from clear. Via Molecular Dynamics simulations, we study the rheology of a model system of sheared frictional monodisperse granular materials [7, 8]. In particular, we aim to understand the nature of a critical line separating crystallised and melted states and the “jammed” region in the phase diagram. We outline as well connections and differences with thermal glass formers and colloidal suspensions.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号