首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   10篇
  国内免费   1篇
化学   169篇
晶体学   7篇
力学   3篇
数学   33篇
物理学   19篇
  2021年   2篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   8篇
  2014年   5篇
  2013年   12篇
  2012年   18篇
  2011年   16篇
  2010年   12篇
  2009年   9篇
  2008年   9篇
  2007年   9篇
  2006年   6篇
  2005年   18篇
  2004年   4篇
  2003年   8篇
  2002年   16篇
  2001年   3篇
  1999年   2篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   5篇
  1990年   4篇
  1989年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1975年   5篇
  1974年   4篇
  1970年   2篇
  1969年   2篇
  1960年   1篇
  1956年   1篇
排序方式: 共有231条查询结果,搜索用时 15 毫秒
111.
Metal overload plays an important role in several diseases or intoxications, like in Wilson's disease, a major genetic disorder of copper metabolism in humans. To efficiently and selectively decrease copper concentration in the liver that is highly damaged, chelators should be targeted at the hepatocytes. In the present work, we synthesized a molecule able to both lower intracellular copper, namely Cu(I), and target hepatocytes, combining within the same structure a chelating unit and a carbohydrate recognition element. A cyclodecapeptide scaffold displaying a controlled conformation with two independent faces was chosen to introduce both units. One face displays a cluster of carbohydrates to ensure an efficient recognition of the asialoglycoprotein receptors, expressed on the surface of hepatocytes. The second face is devoted to metal ion complexation thanks to the thiolate functions of two cysteine side-chains. To obtain a chelator that is active only once inside the cells, the two thiol functions were oxidized in a disulfide bridge to afford the glycopeptide P(3). Two simple cyclodecapeptides modeling the reduced and complexing form of P(3) in cells proved a high affinity for Cu(I) and a high selectivity with respect to Zn(II). As expected, P(3) becomes an efficient Cu(I) chelator in the presence of glutathione that mimics the intracellular reducing environment. Finally, cellular uptake and ability to lower intracellular copper were demonstrated in hepatic cell lines, in particular in WIF-B9, making P(3) a good candidate to fight copper overload in the liver.  相似文献   
112.
Liver metastases in patients with gastroenteropancreatic (GEP) endocrine tumors represent the main factor of adverse prognosis in this tumor type and thus have a strong effect on the therapeutic strategies. Currently, magnetic resonance imaging (MRI) is considered the modality of choice for the noninvasive, in vivo detection of liver metastases. Dedicated MRI protocols suitable for following liver lesion evolution on an experimental model of endocrine tumors could be valuable. An experimental animal model mimicking the clinical situation of intrahepatic dissemination has been designed. The goal of this study was to characterize liver lesions in this athymic nude mouse model and assess the detection sensitivity of MRI using a physiological gating strategy optimized for high magnetic fields.  相似文献   
113.
Thermo Stimulated Current and Dynamic Dielectric Spectroscopy studies were carried out on hybrid ferroelectric Polyamide 11/Barium Titanate to investigate dielectric relaxation modes. The correlated results obtained by both methods allow us to describe precisely the molecular mobility of this 0–3 nanocomposite; in this work we will focus on the influence of the 700 nm nanoparticles volume fraction. The dielectric spectroscopy shows that the molecular mobility associated with the liquid dynamic is not influenced by the volume fraction. The evolution of low frequency relaxation, observed by depolarization currents techniques, have been attributed to the decrease of Cooperative Rearranging Region size and the increase of intra/inter macromolecular interactions in the soft amorphous phase.  相似文献   
114.
A highly bright and photostable, fluorescent nanohybrid particle is presented which consists of gold nanoparticles (GNPs) embedded in dye-doped silica in a core-shell configuration. The dye used is the near-infrared emitting 4,5-benzo-5'-(iodoacetaminomethyl)-1',3,3,3',3'-pentamethyl-1-(4-sulfobutyl) indodicarbo cyanine. The nanohybrid architecture comprises a GNP core which is separated from a layer of dye molecules by a 15 nm buffer layer and has an outer protective, undoped silica shell. Using this architecture, a brightness factor of 550 has been achieved compared to the free dye. This hybrid system, referred to as Noble metal Enhanced Optical Nanohybrid (NEON) in this paper, is the first nanohybrid construct to our knowledge which demonstrates such tunable fluorescence property. NEON has enhanced photostability compared to the free dye and compared to a control particle without GNPs. Furthermore, the NEON particle, when used as a fluorescent label in a model bioassay, shows improved performance over assays using a conventional single dye molecule label.  相似文献   
115.
The correlations between the transitions and the dielectric relaxation processes of the oriented poly(ethylene terephthalate) (PET) pre-impregnated of the polyester thermoplastic adhesive have been investigated by differential scanning calorimetry (DSC) and dynamic dielectric spectroscopy (DDS). The thermoplastic polyester adhesive and the oriented PET films have been studied as reference samples. This study evidences that the adhesive chain segments is responsible for the physical structure evolution in the PET-oriented film. The transitions and dielectric relaxation modes’ evolutions in the glass transition region appear characteristic of the interphase between adhesive and PET film, which is discussed in terms of molecular mobility. The storage at room temperature of the adhesive tape involves the heterogeneity of the physical structure, characterized by glass transition dissociation. Thus, the correlation between the transitions and the dielectric relaxation processes evidences a segregation of the amorphous phases. Therefore, the physical structure and the properties of the material have been linked to the chemical characteristics.  相似文献   
116.
117.
In this work, we used a model assay system (polyclonal human IgG–goat antihuman IgG) to elucidate some of the key factors that influence the analytical performance of bioassays that employ metal-enhanced fluorescence (MEF) using silver nanoparticles (NPs). Cy5 dye was used as the fluorescent label, and results were compared with a standard assay performed in the absence of NPs. Two sizes of silver NPs were prepared with respective diameters of 60 ± 10 and 149 ± 16 nm. The absorption spectra of the NPs in solution were fitted accurately using Mie theory, and the dipole resonance of the 149-nm NPs in solution was found to match well with the absorption spectrum of Cy5. Such spectral matching is a key factor in optimizing MEF. NPs were deposited uniformly and reproducibly on polyelectrolyte-coated polystyrene substrates. Compared to the standard assay performed without the aid of NPs, significant improvements in sensitivity and in limit of detection (LOD) were obtained for the assay with the 149-nm NPs. An important observation was that the relative enhancement of fluorescence increased as the concentration of antigen increased. The metal-assisted assay data were analyzed using standard statistical methods and yielded a LOD of 0.086 ng/mL for the spectrally matched NPs compared to a value of 5.67 ng/mL obtained for the same assay in the absence of NPs. This improvement of ∼66× in LOD demonstrates the potential of metal-enhanced fluorescence for improving the analytical performance of bioassays when care is taken to optimize the key determining parameters.   相似文献   
118.
Microfluidic technology has been successfully applied to isolate very rare tumor-derived epithelial cells (circulating tumor cells, CTCs) from blood with relatively high yield and purity, opening up exciting prospects for early detection of cancer. However, a major limitation of state-of-the-art CTC-chips is their inability to characterize the behavior and function of captured CTCs, for example to obtain information on proliferative and invasive properties or, ultimately, tumor re-initiating potential. Although CTCs can be efficiently immunostained with markers reporting phenotype or fate (e.g. apoptosis, proliferation), it has not yet been possible to reliably grow captured CTCs over long periods of time and at single cell level. It is challenging to remove CTCs from a microchip after capture, therefore such analyses should ideally be performed directly on-chip. To address this challenge, we merged CTC capture with three-dimensional (3D) tumor cell culture on the same microfluidic platform. PC3 prostate cancer cells were isolated from spiked blood on a transparent PDMS CTC-chip, encapsulated on-chip in a biomimetic hydrogel matrix (QGel?) that was formed in situ, and their clonal 3D spheroid growth potential was assessed by microscopy over one week in culture. The possibility to clonally expand a subset of captured CTCs in a near-physiological in vitro model adds an important element to the expanding CTC-chip toolbox that ultimately should improve prediction of treatment responses and disease progression.  相似文献   
119.
Lanthanide complexes with a series of hexapeptides-incorporating two unnatural chelating amino acids with aminodiacetate groups, Ada(1) and Ada(2)-have been examined in terms of their speciation, structure, stability and luminescence properties. Whereas Ada(2) acts as a tridentate donor in all cases, Ada(1) may act as a tetradentate donor thanks to the coordination of the amide carbonyl function assisted by the formation of a six-membered chelate ring. The position of the Ada(1) residue in the sequence is demonstrated to be critical for the lanthanide complex speciation and structure. Ada(1) promotes the coordination of the backbone amide function to afford a highly dehydrated Ln complex and an S-shape structure of the peptide backbone, only when found in position 2.  相似文献   
120.
RNase (ribonuclease) mapping by nucleobase-specific endonucleases combined with mass spectrometry (MS) is a powerful analytical method for characterizing ribonucleic acids such as transfer RNAs. Typical free solution enzymatic digestion of RNA samples results in a significant amount of RNase being present in the sample solution analyzed by MS. In some cases, the RNase can lead to contamination of the high performance liquid chromatography and MS instrumentation. Here we investigate and compare several different approaches for reducing or eliminating contaminating RNase from the digested RNA sample before LC-MS analysis. Approaches using immobilized RNases were found to be most effective, with no enzyme carryover into the digested sample detected. Among the various options for immobilized RNases, we show that carbodiimide-based reactions can be used to couple RNases to carboxylic acid-terminated magnetic beads. The immobilized enzymes retain biological activity, are re-usable, and do not interfere with subsequent LC-MS analysis of the expected RNase digestion products. The use of immobilized RNases provides a simple approach for eliminating enzyme contamination in mass spectrometry-based RNase mapping experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号