首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2841篇
  免费   81篇
  国内免费   16篇
化学   1945篇
晶体学   13篇
力学   76篇
数学   409篇
物理学   495篇
  2023年   18篇
  2022年   49篇
  2021年   65篇
  2020年   49篇
  2019年   41篇
  2018年   44篇
  2017年   37篇
  2016年   99篇
  2015年   81篇
  2014年   80篇
  2013年   163篇
  2012年   167篇
  2011年   205篇
  2010年   108篇
  2009年   116篇
  2008年   178篇
  2007年   176篇
  2006年   178篇
  2005年   160篇
  2004年   151篇
  2003年   117篇
  2002年   120篇
  2001年   38篇
  2000年   38篇
  1999年   32篇
  1998年   21篇
  1997年   19篇
  1996年   38篇
  1995年   16篇
  1994年   15篇
  1993年   12篇
  1992年   12篇
  1991年   11篇
  1990年   20篇
  1989年   16篇
  1988年   14篇
  1987年   16篇
  1986年   12篇
  1985年   29篇
  1984年   21篇
  1983年   17篇
  1982年   22篇
  1981年   16篇
  1980年   23篇
  1979年   25篇
  1978年   7篇
  1977年   6篇
  1976年   5篇
  1975年   5篇
  1974年   6篇
排序方式: 共有2938条查询结果,搜索用时 15 毫秒
81.
High-throughput ligand-based NMR screening with competition binding experiments is extended to (19)F detection. Fluorine is a favorable nucleus for these experiments because of the significant contribution of the Chemical Shift Anisotropy (CSA) to the (19)F transverse relaxation of the ligand signal when bound to a macromolecular target. A low to moderate affinity ligand containing a fluorine atom is used as a reference molecule for the detection and characterization of new ligands. Titration NMR experiments with the selected reference compound are performed for finding the optimal set-up conditions for HTS and for deriving the binding constants of the identified NMR hits. Rapid HTS of large chemical mixtures and plant or fungi extracts against the receptor of interest is possible due to the high sensitivity of the (19)F nucleus and the absence of overlap with the signals of the mixtures to be screened. Finally, a novel approach for HTS using a reference molecule in combination with a control molecule is presented.  相似文献   
82.
Alpha-amino acids are soluble in acetonitrile when treated with phosphazene bases. As a result, the protection/deprotection events that are usually required for peptide coupling reactions can be minimized. This is illustrated in the synthesis of the important angiotensin-converting enzyme (ACE) inhibitor enalapril. [reaction: see text]  相似文献   
83.
Addition of Tb3+ to purple membrane (PM) suspensions changes the orientation of the menbrane normal from parallel to perpendicular with respect to the magnetic field. Residual dipolar couplings measured in protein L in the presence of PM are scaled by a factor of -1/2. NMR line broadening and cross-correlation effects induced by the addition of PM are partially reversed by Tb3+ but not by Tm3+ that has no effect on the orientation of PM. This is interpreted as the result of anisotropically restricted motion of protein L in the transiently PM-bound form.  相似文献   
84.
85.
The intake of tomato glycoalkaloids can exert beneficial effects on human health. For this reason, methods for a rapid quantification of these compounds are required. Most of the methods for α-tomatine and dehydrotomatine quantification are based on chromatographic techniques. However, these techniques require complex and time-consuming sample pre-treatments. In this work, HPLC-ESI-QqQ-MS/MS was used as reference method. Subsequently, multiple linear regression (MLR) and partial least squares regression (PLSR) were employed to create two calibration models for the prediction of the tomatine content from thermogravimetric (TGA) and attenuated total reflectance (ATR) infrared spectroscopy (IR) analyses. These two fast techniques were proven to be suitable and effective in alkaloid quantification (R2 = 0.998 and 0.840, respectively), achieving low errors (0.11 and 0.27%, respectively) with the reference technique.  相似文献   
86.
87.
Boronic acids (R‐B(OH)2) are a family of molecules that have found a large number of applications in materials science. In contrast, boronate anions (R‐B(OH)3?) have hardly been used so far for the preparation of novel materials. Here, a new crystalline phase involving a boronate ligand is described, Ca[C4H9‐B(OH)3]2, which is then used as a basis for the establishment of the spectroscopic signatures of boronates in the solid state. The phase was characterized by IR and multinuclear solid‐state NMR spectroscopy (1H, 13C, 11B and 43Ca), and then modeled by periodic DFT calculations. Anharmonic OH vibration frequencies were calculated as well as NMR parameters (by using the Gauge Including Projector Augmented Wave—GIPAW—method). These data allow relationships between the geometry around the OH groups in boronates and the IR and 1H NMR spectroscopic data to be established, which will be key to the future interpretation of the spectra of more complex organic–inorganic materials containing boronate building blocks.  相似文献   
88.
Quassinoids from Picrasma crenata   总被引:1,自引:0,他引:1  
From woods of Picrasma crenata, a new stereoisomer dihydronorneoquassin was obtained together with others well knowns dihydronorneoquassin, parain, alpha-neoquassin, beta-neoquassin and quassin. The structures were determined by spectroscopic data and chemical evidence.  相似文献   
89.
Methyl or silyl dissociation in the CH(2)=CHCH(2)-XH(3) (a-XH(3)(*)(+)) and CH(2)=CHCH=CHCH(2)-XH(3) (p-XH(3)(*) (+)) radical cations (X = C, Si) yields a(+) or p(+) and XH(3)(*). Similarly, the radical anions a-CH(3)(*) (-) and p-CH(3)(*) (-) give the pi-delocalized anion and CH(3)(*) preferentially. In contrast, a-SiH(3)(*) (-) and p-SiH(3)(*-) prefer to dissociate into the pi-delocalized radical and silide. All reactions are endoergic: by 43-50 kcal mol(-)(1) in the radical cations, and easier to some extent in the radical anions, that require 29-33 (X = C) and 13-14 kcal mol(-)(1) (X = Si). The fragmentation energy profiles do not present significant barriers for the backward process in the case of the radical cations. All radical anions exhibit an energy maximum along the dissociation pathway, but the barrier is lower than the dissociation limit. Fragmentation is "activated" more in the anions than in the cations with respect to homolysis in the corresponding neutrals (that requires 72-81 kcal mol(-)(1)). Wave function analysis indicates that the C-X bond cleavage in the hydrocarbon radical ions, although formally comparable to a homolytic process, is at variance with this model, due to the spin recoupling of one of the two C-X bond electrons with the originally unpaired electron. This is basically true also for the silyl-substituted radical anions, in which the initial more delocalized charge distribution might suggest some heterolytic character of the bond cleavage.  相似文献   
90.
Theoretical calculations of a model for tyrosine oxidation in photosystem II are presented. In this model system, an electron is transferred to ruthenium from tyrosine, which is concurrently deprotonated. This investigation is motivated by experimental measurements of the dependence of the rates on pH and temperature (Sj?din et al. J. Am. Chem. Soc. 2000, 122, 3932). The mechanism is proton-coupled electron transfer (PCET) at pH < 10 when the tyrosine is initially protonated and is single electron transfer (ET) for pH > 10 when the tyrosine is initially deprotonated. The PCET rate increases monotonically with pH, whereas the single ET rate is independent of pH and is 2 orders of magnitude faster than the PCET rate. The calculations reproduce these experimentally observed trends. The pH dependence for the PCET reaction arises from the decrease in the reaction free energies with pH. The calculations indicate that the larger rate for single ET arises from a combination of factors, including the smaller solvent reorganization energy for ET and the averaging of the coupling for PCET over the reactant and product hydrogen vibrational wave functions (i.e., a vibrational overlap factor in the PCET rate expression). The temperature dependence of the rates, the solvent reorganization energies, and the deuterium kinetic isotope effects determined from the calculations are also consistent with the experimental results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号