首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3066篇
  免费   86篇
  国内免费   16篇
化学   2009篇
晶体学   15篇
力学   91篇
数学   511篇
物理学   542篇
  2023年   22篇
  2022年   55篇
  2021年   78篇
  2020年   52篇
  2019年   49篇
  2018年   40篇
  2017年   41篇
  2016年   112篇
  2015年   100篇
  2014年   91篇
  2013年   185篇
  2012年   194篇
  2011年   218篇
  2010年   127篇
  2009年   123篇
  2008年   187篇
  2007年   183篇
  2006年   177篇
  2005年   160篇
  2004年   154篇
  2003年   121篇
  2002年   116篇
  2001年   48篇
  2000年   31篇
  1999年   34篇
  1998年   21篇
  1997年   18篇
  1996年   36篇
  1995年   16篇
  1994年   27篇
  1993年   13篇
  1992年   14篇
  1991年   11篇
  1990年   21篇
  1989年   16篇
  1988年   18篇
  1987年   12篇
  1986年   12篇
  1985年   29篇
  1984年   23篇
  1983年   16篇
  1982年   26篇
  1981年   20篇
  1980年   22篇
  1979年   27篇
  1978年   7篇
  1977年   9篇
  1976年   8篇
  1974年   6篇
  1973年   7篇
排序方式: 共有3168条查询结果,搜索用时 15 毫秒
131.
Photosensitized reactions contribute to the development of skin cancer and are used in many applications. Photosensitizers can act through different mechanisms. It is currently accepted that if the photosensitizer generates singlet molecular oxygen (1O2) upon irradiation, the target molecule can undergo oxidation by this reactive oxygen species and the reaction needs dissolved O2 to proceed, therefore the reaction is classified as 1O2‐mediated oxidation (type II mechanism). However, this assumption is not always correct, and as an example, a study on the degradation of 2′‐deoxyguanosine 5′‐monophosphate photosensitized by pterin is presented. A general mechanism is proposed to explain how the degradation of biological targets, such as nucleotides, photosensitized by pterins, naturally occurring 1O2 photosensitizers, takes place through an electron‐transfer‐initiated process (type I mechanism), whereas the contribution of the 1O2‐mediated oxidation is almost negligible.  相似文献   
132.
Molecular imprinting technology has been employed for the first time to prepare a specifically affinity chromatographic stationary phase for speciation purposes. Tributyltin has been chosen as the template molecule and the non-covalent approach has been applied. Three different polymerization methods have been evaluated: (i) a composite material, (ii) a polymer prepared via-Iniferter grafting; (iii) an emulsion polymer. Columns packed with different polymers have been evaluated by liquid chromatography (LC) coupled to inductively coupled plasma mass spectrometry (ICP-MS). The chromatographic conditions as well as the analytical characteristics of the developed method are discussed in this paper. Our findings have shown formation of specific cavities in the grafted Iniferter as well as in the emulsion polymers with the latter achieving resolution of four organotin compounds. Detection limits are similar to those obtained with commercial, but not specific, stationary phases (6 pg for monobutyltin, MBT; 10 pg for both tributyltin, TBT, and triphenyltin, TPhT; and 20 pg for dibutyltin, DBT). The main advantage of this proposed stationary phase is that good recovery is obtained for all species, including MBT. Baseline resolution for TBT and TPhT has also been obtained. The high selectivity of this column prevents matrix interferences. The method has been validated by analyzing two biota reference materials (ERM-CE477 mussel tissue and T-38 oyster tissue).  相似文献   
133.
In this paper we report an SFG/DFG investigation of the adsorption of CN? – used as a probe molecule to study the electrochemical double-layer structure – at a polycrystalline Au electrode in 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl) amide ([BMP][TFSA]) room-temperature ionic liquid (RTIL). The adsorption of CN? yielded single SFG and DFG bands in the range from ca. 2125 to 2135 cm?1, exhibiting a Stark tuning of ca. 3 cm?1 V?1. Vibrational resonances – corresponding to modes of the RTIL coadsorbed with CN?, were found in the range from ca. 1200 to 1500 cm?1. The study of the double-layer structure was complemented by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements, from which the differential double-layer capacity (CDL) was estimated.  相似文献   
134.
Three new bis-cyclometalated iridium(III) complexes, of general formula [Ir(2-phenylpyridine)(2)(L)](+), are reported. The compounds contain a dipyridine-type ligand (L) derived from di-2-pyridylketone (dipyridin-2-ylmethanol, 2,2'-(hydrazonomethylene)dipyridine and 3-hydroxy-3,3-di(pyridine-2-yl)propanenitrile) and were synthesized through two different reaction pathways. The alternative synthetic pathway herein proposed, namely the direct reactions on the complex [Ir(2-phenylpyridine)(2)(2,2'-dipyridylketone)](+), overcame the inconveniences encountered with the standard reaction between the dimeric precursor [Ir(2-phenylpyridine)(2)(μ-Cl)](2) and the ancillary ligands (L). The photophysical characterization of the iridium complexes reveals that modifications on the ancillary ligand introduce large changes in the photophysical behaviour of the complexes. High emission quantum yield is associated with the presence of a saturated carbon between the two pyridyl moieties: [Ir(2-phenylpyridine)(2)(2,2'-dipyridylketone)](+) and [Ir(2-phenylpyridine)(2)(2,2'-(hydrazonomethylene)dipyridine)](+) are extremely low emissive, while [Ir(2-phenylpyridine)(2)(dipyridin-2-ylmethanol)](+) and [Ir(2-phenylpyridine)(2)(3-hydroxy-3,3-di(pyridine-2-yl)propanenitrile)](+) are good photoemitters. DFT and TD-DFT calculations confirmed the mixed LC/MLCT character of the excited states involved in the absorption and emission processes and highlighted the role of the π-conjugation between the two subunits of the ancillary ligand in determining the nature of the LUMO.  相似文献   
135.
In the presence of a highly efficient novel bifunctional organocatalyst at low loadings under mild conditions, enolizable homophthalic anhydrides can be added to a range of aromatic and aliphatic aldehydes to give dihydroisocoumarins, with excellent yields and diastereo- and enantiocontrol (up to 99% ee).  相似文献   
136.
Preceding NMR experiments show that the conformation of tandem GA base pairs, an important recurrent non-canonical building block in RNA duplexes, is context dependent. The GA base pairs adopt "sheared" N3(G)-N6(A), N2(G)-N7(A) geometry in the r(CGAG)(2) and r(iGGAiC)(2) contexts while switching to "imino" N1(G)-N1(A), O6(G)-N6(A) geometry in the r(GGAC)(2) and r(iCGAiG)(2) contexts (iC and iG stand for isocytosine and isoguanine, respectively). As base stacking is likely to be one of the key sources of the context dependence of the conformation of GA base pairs, we calculated base stacking energies in duplexes containing such base pairs, to see if this dependence can be predicted by stacking energy calculations. When investigating the context dependence of the GA geometry two different conformations of the same duplex were compared (imino vs. sheared). The geometries were generated via explicit solvent MD simulations of the respective RNA duplexes, while the subsequent QM energy calculations focused on base stacking interactions of the four internal base pairs. Geometrical relaxation of nucleobase atoms prior to the stacking energy computations has a non-negligible effect on the results. The stacking energies were derived at the DFT-D/6-311++G(3df,3pd) level. We show a rather good correspondence between the intrinsic gas-phase stacking energies and the NMR-determined GA geometries. The conformation with more favorable gas-phase stacking is in most cases the one observed in experiments. This correlation is not improved when including solvent effects via the COSMO method. On the other side, the stacking calculations do not predict the relative thermodynamic stability of duplex formation for different sequences.  相似文献   
137.
A series of 3-[3-(4-aryl-1-piperazinyl)-propyl]-1H-indole derivatives (12a-h) was synthesized and evaluated for binding affinity at the human 5-hydroxytryptamine(1A) receptor (5-HT(1A)R) compounds (12b) and (12h) showed the highest 5-HT(1A) receptor affinity (IC(50)=15 nM). Molecular docking studies with all the compounds in a homology model of 5-HT(1A) showed that the main interaction anchoring the ligand in the receptor was a charge-reinforced bond between the protonated nitrogen atom (N-4) of the piperazine ring and Aspartate(3.32).  相似文献   
138.
The fully-extended, multiple C(5), conformation or 2.0(5) helix is a very appealing peptide secondary structure, in particular for its potential use as a molecular spacer, as it is characterized by the longest elevation (as high as 3.62 ?) between the α-carbon atoms of two consecutive α-amino acids. Despite this intriguing property, however, it is only poorly investigated and understood. Here, using a complete series of C(α,α)-diethylglycine (Deg) homo-oligopeptide esters to the pentamer level, we exploited the properties of a fluorophore and a quencher, synthetically positioned at the N- and C-termini of the main chain, respectively, to check the applicability of the fully-extended conformation as a rigid molecular spacer. The fluorescence study was complemented by FT-IR absorption and NMR conformational investigations. The X-ray diffraction structures of selected compounds are also reported. Unfortunately, we find that, even in a solvent of low polarity, such as chloroform, in this peptide series an equilibrium does take place between the fragile fully-extended conformation and the 3(10)-helical structure, the latter becoming more and more stable as the main chain is elongated. Since the Deg homo-peptide esters lacking any terminal aromatic group, previously investigated, are known to adopt a stable fully-extended conformation in chloroform solution, we tend to attribute the 3D-structure instability observed in this work to the presence of multiple aromatic rings in their blocking groups.  相似文献   
139.
Stretching experiments on single molecules of arbitrary length opened the way for studying the statistical mechanics of small systems. In many cases in which the thermodynamic limit is not satisfied, different macroscopic boundary conditions, corresponding to different statistical mechanics ensembles, yield different force-displacement curves. We formulate analytical expressions and develop Monte Carlo simulations to quantitatively evaluate the difference between the Helmholtz and the Gibbs ensembles for a wide range of polymer models of biological relevance. We consider generalizations of the freely jointed chain and of the worm-like chain models with extensible bonds. In all cases we show that the convergence to the thermodynamic limit upon increasing contour length is described by a suitable power law and a specific scaling exponent, characteristic of each model.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号