首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2718篇
  免费   102篇
  国内免费   7篇
化学   2125篇
晶体学   7篇
力学   43篇
数学   384篇
物理学   268篇
  2024年   2篇
  2023年   25篇
  2022年   78篇
  2021年   94篇
  2020年   71篇
  2019年   76篇
  2018年   37篇
  2017年   42篇
  2016年   109篇
  2015年   96篇
  2014年   102篇
  2013年   166篇
  2012年   195篇
  2011年   201篇
  2010年   153篇
  2009年   113篇
  2008年   169篇
  2007年   150篇
  2006年   136篇
  2005年   136篇
  2004年   130篇
  2003年   102篇
  2002年   98篇
  2001年   34篇
  2000年   40篇
  1999年   31篇
  1998年   25篇
  1997年   25篇
  1996年   30篇
  1995年   21篇
  1994年   22篇
  1993年   18篇
  1992年   21篇
  1991年   7篇
  1990年   5篇
  1989年   5篇
  1988年   7篇
  1987年   10篇
  1986年   8篇
  1985年   7篇
  1984年   2篇
  1983年   5篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1970年   3篇
排序方式: 共有2827条查询结果,搜索用时 13 毫秒
81.
DNA G-quadruplexes (G4s) are key structures for the development of targeted anticancer therapies. In this context, ligands selectively interacting with G4s can represent valuable anticancer drugs. Aiming at speeding up the identification of G4-targeting synthetic or natural compounds, we developed an affinity chromatography-based assay, named G-quadruplex on Oligo Affinity Support (G4-OAS), by synthesizing G4-forming sequences on commercially available polystyrene OAS. Then, due to unspecific binding of several hydrophobic ligands on nude OAS, we moved to Controlled Pore Glass (CPG). We thus conceived an ad hoc functionalized, universal support on which both the on-support elongation and deprotection of the G4-forming oligonucleotides can be performed, along with the successive affinity chromatography-based assay, renamed as G-quadruplex on Controlled Pore Glass (G4-CPG) assay. Here we describe these assays and their applications to the screening of several libraries of chemically different putative G4 ligands. Finally, ongoing studies and outlook of our G4-CPG assay are reported.  相似文献   
82.
Spectral preprocessing data and chemometric tools are analytical methods widely applied in several scientific contexts i.e., in archaeometric applications. A systematic classification of natural powdered pigments of organic and inorganic nature through Principal Component Analysis with a multi-instruments spectroscopic study is presented here. The methodology allows the access to elementary and molecular unique benchmarks to guide and speed up the identification of an unknown pigment and its recipe. This study is conducted on a set of 48 powdered pigments and tested on a real-case sample from the wall painting in S. Maria Delle Palate di Tusa (Messina, Italy). Four spectroscopic techniques (X-ray Fluorescence, Raman, Attenuated Total Reflectance and Total Reflectance Infrared Spectroscopies) and six different spectrometers are tested to evaluate the impact of different setups. The novelty of the work is to use a systematic approach on this initial dataset using the entire spectroscopic energy range without any windows selection to solve problems linked with the manipulation of large analytes/materials to find an indistinct property of one or more spectral bands opening new frontiers in the dataset spectroscopic analyses.  相似文献   
83.
In a previous paper we discussed co-crystallization in a LDPE/HDPE blend using TREF and DSC. As part of that study it was observed that pure HDPE showed an unexpected fractionation behavior when quench crystallized in TREF. The overall peak broadened and two peaks appeared instead of the previously observed single peak for slow cooled HDPE.The development of two peaks was observed for all commercial HDPEs investigated, independent of their melting indices and densities. TREF and GPC were used in an attempt to evaluate the origin of the two HDPE components.The authors appreciate support from CAPES-BRAZIL (C.A.F.). Additional thanks go to Dr. G. W. Knight in Dow Chemical Company for kindly providing the polymer samples and performing the GPC analysis.  相似文献   
84.
A thermally stable carbocationic covalent organic network (CON), named RIO-70 was prepared from pararosaniline hydrochloride, an inexpensive dye, and triformylphloroglucinol in solvothermal conditions. This nanoporous organic material has shown a specific surface area of 990 m2 g−1 and pore size of 10.3 Å. The material has CO2 uptake of 2.14 mmol g−1 (0.5 bar), 2.7 mmol g−1 (1 bar), and 6.8 mmol g−1 (20 bar), the latter corresponding to 3 CO2 molecules adsorbed per pore per sheet. It is shown to be a semiconductor, with electrical conductivity (σ) of 3.17×10−7 S cm−1, which increases to 5.26×10−4 S cm−1 upon exposure to I2 vapor. DFT calculations using periodic conditions support the findings.  相似文献   
85.
Infections caused by multidrug resistant (MDR) bacteria are a major public health threat. Carbapenems are among the most potent antimicrobial agents that are commercially available to treat MDR bacteria. Bacterial production of carbapenem-hydrolysing metallo-β-lactamases (MBLs) challenges their safety and efficacy, with subclass B1 MBLs hydrolysing almost all β-lactam antibiotics. MBL inhibitors would fulfil an urgent clinical need by prolonging the lifetime of these life-saving drugs. Here we report the synthesis and activity of a series of 2-mercaptomethyl-thiazolidines (MMTZs), designed to replicate MBL interactions with reaction intermediates or hydrolysis products. MMTZs are potent competitive inhibitors of B1 MBLs in vitro (e.g., Ki = 0.44 μM vs. NDM-1). Crystal structures of MMTZ complexes reveal similar binding patterns to the most clinically important B1 MBLs (NDM-1, VIM-2 and IMP-1), contrasting with previously studied thiol-based MBL inhibitors, such as bisthiazolidines (BTZs) or captopril stereoisomers, which exhibit lower, more variable potencies and multiple binding modes. MMTZ binding involves thiol coordination to the Zn(ii) site and extensive hydrophobic interactions, burying the inhibitor more deeply within the active site than d/l-captopril. Unexpectedly, MMTZ binding features a thioether–π interaction with a conserved active-site aromatic residue, consistent with their equipotent inhibition and similar binding to multiple MBLs. MMTZs penetrate multiple Enterobacterales, inhibit NDM-1 in situ, and restore carbapenem potency against clinical isolates expressing B1 MBLs. Based on their inhibitory profile and lack of eukaryotic cell toxicity, MMTZs represent a promising scaffold for MBL inhibitor development. These results also suggest sulphur–π interactions can be exploited for general ligand design in medicinal chemistry.

Metallo-β-lactamases (MBLs) are major culprits of resistance to carbapenems in bacteria. A series of thiazolidines are potent MBL inhibitors, restoring the activity of carbapenems. Metal binding and sulphur–π interactions are key to inhibition.  相似文献   
86.
We have recently discussed how organic nanocrystal dissolution appears in different morphologies and the role of the solution pH in the crystal detriment process. We also highlighted the role of the local molecular chemistry in porphyrin nanocrystals having comparable structures: in water-based acid solutions, protonation of free-base porphyrin molecules is the driving force for crystal dissolution, whereas metal (ZnII) porphyrin nanocrystals remain unperturbed. However, all porphyrin types, having an electron rich π-structure, can be electrochemically oxidized. In this scenario, a key question is: does electrochemistry represent a viable strategy to drive the dissolution of both free-base and metal porphyrin nanocrystals? In this work, by exploiting electrochemical atomic force microscopy (EC-AFM), we monitor in situ and in real time the dissolution of both free-base and metal porphyrin nanocrystals, as soon as molecules reach the oxidation potential, showing different regimes according to the applied EC potential.  相似文献   
87.
Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal forms of human cancer, characterized by unrestrained progression, invasiveness and treatment resistance. To date, there are limited curative options, with surgical resection as the only effective strategy, hence the urgent need to discover novel therapies. A platform of onco-immunology targets is represented by molecules that play a role in the reprogrammed cellular metabolism as one hallmark of cancer. Due to the hypoxic tumor microenvironment (TME), PDA cells display an altered glucose metabolism—resulting in its increased uptake—and a higher glycolytic rate, which leads to lactate accumulation and them acting as fuel for cancer cells. The consequent acidification of the TME results in immunosuppression, which impairs the antitumor immunity. This review analyzes the genetic background and the emerging glycolytic enzymes that are involved in tumor progression, development and metastasis, and how this represents feasible therapeutic targets to counteract PDA. In particular, as the overexpressed or mutated glycolytic enzymes stimulate both humoral and cellular immune responses, we will discuss their possible exploitation as immunological targets in anti-PDA therapeutic strategies.  相似文献   
88.
Interaction in Crystals: The Keyboard of Na⊕ Coordination Numbers in Its Carbazole Anion Salts Some local minima in the shallow potential of the system carbazole anion, sodium cation, and the ethers tetrahydrofuran, 1,2-dimethoxyethane, diglyme, triglyme, tetraglyme, 15-crown-5 as well as 2.2.1-cryptand are explored experimentally and by quantum-chemical calculations. Three prototype contact-ion multiples of Na⊕-solvated carbazole anion M? salts have been crystallized and structurally characterized: polyether-solvated monomers [M?Na⊕solv]1, solvent-shared dimers [M?Na⊕solv]2, and solvent-separated polyions [(M?)nNa?solv](n?1)? [Na⊕solv](n?1). The Na⊕ coordination numbers stretch from 3 to 7 as illustrated by the compounds [(M?)3Na+]??[Na+(2.2.1-crytand)]2 for 3 and 7, [(M?)2Na+(THF)2]? [Na⊕(2.2.1-cryptand)] for 4 and 7, [M? Na+(diglyme)]2 for 5, or [M? Na+(l 5-crown-5)] for 6. Structural comparison is based on literature analogies as well as on results of MNDO calculations concerning charge distribution and enthalpies of formation. Taken together, the results demonstrate the delicate energy balance, by which cation solvation can influence the formation of organic salts.  相似文献   
89.
90.
DJ-1 was originally identified as an oncogene product while mutations of the gene encoding DJ-1/PARK7 were later associated with a recessive form of Parkinson’s disease. Its ubiquitous expression and diversity of function suggest that DJ-1 is also involved in mechanisms outside the central nervous system. In the last decade, the contribution of DJ-1 to the protection from ischemia-reperfusion injury has been recognized and its involvement in the pathophysiology of cardiovascular disease is attracting increasing attention. This review describes the current and gaps in our knowledge of DJ-1, focusing on its role in regulating cardiovascular function. In parallel, we present original data showing an association between increased DJ-1 expression and antiapoptotic and anti-inflammatory markers following cardiac and vascular surgical procedures. Future studies should address DJ-1’s role as a plausible novel therapeutic target for cardiovascular disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号