首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2791篇
  免费   113篇
  国内免费   7篇
化学   2154篇
晶体学   7篇
力学   48篇
数学   392篇
物理学   310篇
  2023年   21篇
  2022年   53篇
  2021年   102篇
  2020年   75篇
  2019年   77篇
  2018年   38篇
  2017年   46篇
  2016年   114篇
  2015年   98篇
  2014年   104篇
  2013年   170篇
  2012年   200篇
  2011年   225篇
  2010年   156篇
  2009年   115篇
  2008年   175篇
  2007年   160篇
  2006年   144篇
  2005年   145篇
  2004年   134篇
  2003年   104篇
  2002年   101篇
  2001年   35篇
  2000年   41篇
  1999年   32篇
  1998年   25篇
  1997年   25篇
  1996年   31篇
  1995年   21篇
  1994年   23篇
  1993年   19篇
  1992年   22篇
  1991年   8篇
  1990年   5篇
  1989年   5篇
  1988年   7篇
  1987年   10篇
  1986年   8篇
  1985年   7篇
  1984年   2篇
  1983年   5篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1970年   2篇
排序方式: 共有2911条查询结果,搜索用时 828 毫秒
71.
72.
Vitamin E supplements are either isolated from plants sources or prepared synthetically. Isolation from plants includes eight different tocopherol structures. Vitamin E synthesis includes seven different stereoisomers, which involves the use of several catalysts that may lead to trace element contamination in the vitamin. The use of ICP-MS is an ideal technique for detecting these trace elements. However, the oily nature of the samples requires the development of a sample preparation methodology. This study was done upon the request of synthetic vitamin E manufacturers to test the trace metal purity of their samples. In this work, the comparison of an acid microwave digestion and emulsion preparation is discussed. Cromium, nickel, tin and lead were found in the synthetic vitamin E analyzed and 200, 60, 9 and 45 ppb were the concentrations found respectively for these elements.Digesting the samples gives slightly lower detection limits compared to the emulsion preparation.  相似文献   
73.
Electron Transfer and Ion Pair Formation Single Crystal Structure of Bis(sodium 1,1′-biphenyl-2-thiolate-diglyme): An Intermediate in the Reductive Ring Opening of Dibenzothiophene On Na-metal reduction of dibenzothiophene, the five-membered sulfur ring opens to form a colorless 1,1′-biphenyl-2-thiolate sodium salt, which, according to its single-crystal structure determination, is a dimer containing a four-membered, twice diglyme-solvated ring (diglyme···Na?SR)2. Additional measurements provide the following information: cyclic voltammetry in aprotic MeCN solution shows one quasi-reversible electron transfer at E = ?2.58 V. The dibenzothiophene radical anion can be generated in aprotic THF solution at a K mirror and characterized by an 81-line ESR spectrum and its simulation. This blue species is also the first UV/VIS detectable one before the solution changes via green (due to blue + yellow color mixing) to yellow, yielding across an isosbestic point a second and diamagnetic compound. All of the above results suggest a consecutive two-electron reduction followed by an intersystem protonation, M + (e?) → M.? (blue) + (e?) → (M??, yellow?) + (H) → MH? (colorless), to yield the crystallized and structurally characterized reaction intermediate. The diglyme-solvated sodium-salt dimer provides a basis for a quantum-chemical discussion of some facets of the most likely microscopic reduction pathway.  相似文献   
74.
Solutions containing Zn(II) and Cu(II) complexes with [15]aneN(3)O(2) rapidly adsorb atmospheric CO(2) to give {[ZnL](3)(&mgr;(3)-CO(3))}.(ClO(4))(4) (2) and {[CuL](3)(&mgr;(3)-CO(3))}.(ClO(4))(4) (4) complexes. The crystal structures of both complexes have been solved (for 2, space group R3c, a, b = 22.300(5) ?, c = 17.980(8) ?, V = 7743(4) ?(3), Z = 6, R = 0.0666, R(w)(2) = 0.1719; for 4, space group R3c, a, b = 22.292(7) ?, c = 10.096(8) ?, V = 7788(5) ?(3), Z = 6, R = 0.0598, R(w)(2) = 0.1611), and the spectromagnetic behavior of 4 has been studied. In both compounds a carbonate anion triply bridges three metal cations. Each metal is coordinated by one oxygen of the carbonate, three nitrogens, and an oxygen of the macrocycle; the latter donor weakly interacts with the metals. Although the two compounds are isomorphous, they are not isostructural, because the coordination geometries of Zn(II) in 2 and Cu(II) in 4 are different. The mixed complex {[CuZn(2)L(3)](&mgr;(3)-CO(3))}.(ClO(4))(4) has been synthesized. X-ray analysis (space group R3c, a, b = 22.323(7) ?, c = 17.989(9) ?, V = 7763(5) ?(3), Z = 6, R = 0.0477, R(w)(2) = 0.1371) and EPR measurements are in accord with a &mgr;(3)-carbonate bridging one Cu(II) and two Zn(II) ions in {[CuZn(2)L(3)](&mgr;(3)-CO(3))}(4+). Both the Zn(II) and Cu(II) cations exhibit the same coordination sphere, almost equal to that found in the trinuclear Zn(II) complex 2. The systems Zn(II)/L and Cu(II)/Lhave been studied by means of potentiometric measurements in 0.15 mol dm(-)(1) NaCl and in 0.1 mol dm(-)(3) NaClO(4) aqueous solutions; the species present in solution and their stability constants have been determined. In both systems [ML](2+) species and hydroxo complexes [M(II)LOH](+) (M = Zn, Cu) are present in solution. In the case of Cu(II), a [CuL(OH)(2)] complex is also found. The process of CO(2) fixation is due to the presence of such hydroxo-species, which can act as nucleophiles toward CO(2). In order to test the nucleophilic ability of the Zn(II) complexes, the kinetics of the promoted hydrolysis of p-nitrophenyl acetate has been studied. The [ZnLOH](+) complex promotes such a reaction, where the Zn(II)-bound OH(-) acts as a nucleophile to the carbonyl carbon. The equilibrium constants for the addition of HCO(3)(-) and CO(3)(2)(-) to the [ZnL](2+) complex have been potentiometrically determined. Only [ML(HCO(3))](+) and [ML(CO(3))] species are found in aqueous solution. A mechanism for the formation of {[ML](3)(&mgr;(3)-CO(3))}.(ClO(4))(4) is suggested.  相似文献   
75.
Host-guest antenna materials   总被引:2,自引:0,他引:2  
The focus of this review is on host-guest composites with photonic antenna properties. The material generally consists of cylindrical zeolite L crystals the channels of which are filled with dye molecules. The synthesis is based on the fact that molecules can diffuse into individual channels. This means that, under the appropriate conditions, they can also leave the zeolite by the same way. In some cases, however, it is desirable to block their way out by adding a closure molecule. Functionalization of the closure molecules allows tuning of, for example, wettability, refractive index, and chemical reactivity. The supramolecular organization of the dyes inside the channels is a first stage of organization. It allows light harvesting within a certain volume of a dye-loaded nanocrystalline zeolite and radiationless transport to both ends of the cylinder or from the ends to the center. The second stage of organization is the coupling to an external acceptor or donor stopcock fluorophore at the ends of the channels, which can trap or inject electronic excitation energy. The third stage of organization is the coupling to an external device through a stopcock molecule. The wide-ranging tunability of these highly organized materials offers fascinating new possibilities for exploring excitation-energy-transfer phenomena, and challenges for developing new photonic devices.  相似文献   
76.
[reaction: see text] Ytterbium triflate was shown to be an effective catalyst in promoting the synthesis of either isopropyl esters or free alpha-hydroxy-arylacetic acids from substituted aromatic glyoxals and aryl methyl ketones, respectively. The reaction to provide acids starting from differently substituted ketones was carried out by an environmentally friendly method using an aqueous medium as a solvent and giving the adducts in 78-99% yield without any further purification after the usual workup.  相似文献   
77.
The 3 steps sequential extraction procedure proposed by the Standards Measurements and Testing program (SM&T--formerly BCR) of the European Union has been applied for the speciation of metals in sediments. Results obtained by the application of the BCR standardized procedure were compared to those of two four step sequential extraction procedures, which are different from the BCR procedure only for the introduction of an additional step with NaOCl, as 2nd and 3rd step respectively. Five different metals have been taken into consideration: Cd, Cu, Ni, Pb and Zn. The analytical performances of the laboratory have been evaluated using three certified reference materials: the BCR 601 lake sediment for the BCR sequential extraction procedure, PACS-1 and MESS-1 for total metal concentration. Results showed that the efficiency of NaOCl treatment is higher or at least equal to that of H2O2 treatment and that its selectivity is quite satisfying. Moreover the NaOCl treatment doesn't significantly influence the extraction of the easily reducible fraction.  相似文献   
78.
Further investigation of the reaction of Ar*GaCl2 (Ar* = 2,4,6-t-Bu3C6H2) with Na[Mn(CO)5] resulted in the new compound, [Ga(Ar*){Mn(CO)5}2] 2 . The new indium compounds, [In(Ar*){Co(CO)4}2] 3 and [In(Ar*){Mn(CO)5}2] 4 , have been prepared by the treatment of Ar*InBr2 with Na[Co(CO)4] and Na[Mn(CO)5], respectively. The structure of 3 was established by single-crystal X-ray diffraction: space group P1 (No. 2), Z = 2, a = 8.625(1) Å, b = 10.557(2) Å, c = 17.55(2) Å, α = 88.43(1)°, β = 83.45(1)°, γ = 71.14(1)°. The X-ray crystal structure of [Ga{Mn(CO)5}3] is also reported: space group Pbca (No. 61), Z = 8, a = 12.83(3) Å, b = 11.753(2) Å, c = 29.662(6) Å, α = β = γ = 90°.  相似文献   
79.
Infections caused by multidrug resistant (MDR) bacteria are a major public health threat. Carbapenems are among the most potent antimicrobial agents that are commercially available to treat MDR bacteria. Bacterial production of carbapenem-hydrolysing metallo-β-lactamases (MBLs) challenges their safety and efficacy, with subclass B1 MBLs hydrolysing almost all β-lactam antibiotics. MBL inhibitors would fulfil an urgent clinical need by prolonging the lifetime of these life-saving drugs. Here we report the synthesis and activity of a series of 2-mercaptomethyl-thiazolidines (MMTZs), designed to replicate MBL interactions with reaction intermediates or hydrolysis products. MMTZs are potent competitive inhibitors of B1 MBLs in vitro (e.g., Ki = 0.44 μM vs. NDM-1). Crystal structures of MMTZ complexes reveal similar binding patterns to the most clinically important B1 MBLs (NDM-1, VIM-2 and IMP-1), contrasting with previously studied thiol-based MBL inhibitors, such as bisthiazolidines (BTZs) or captopril stereoisomers, which exhibit lower, more variable potencies and multiple binding modes. MMTZ binding involves thiol coordination to the Zn(ii) site and extensive hydrophobic interactions, burying the inhibitor more deeply within the active site than d/l-captopril. Unexpectedly, MMTZ binding features a thioether–π interaction with a conserved active-site aromatic residue, consistent with their equipotent inhibition and similar binding to multiple MBLs. MMTZs penetrate multiple Enterobacterales, inhibit NDM-1 in situ, and restore carbapenem potency against clinical isolates expressing B1 MBLs. Based on their inhibitory profile and lack of eukaryotic cell toxicity, MMTZs represent a promising scaffold for MBL inhibitor development. These results also suggest sulphur–π interactions can be exploited for general ligand design in medicinal chemistry.

Metallo-β-lactamases (MBLs) are major culprits of resistance to carbapenems in bacteria. A series of thiazolidines are potent MBL inhibitors, restoring the activity of carbapenems. Metal binding and sulphur–π interactions are key to inhibition.  相似文献   
80.
Rare‐Earth‐Metal Coordination Polymers: Syntheses and Crystal Structures of Three New Glutarates, [Pr2(Glu)3(H2O)4] · 10.5H2O, [Pr(Glu)(H2O)2]Cl, and [Er(Glu)(GluH)(H2O)2] The new rare‐earth dicarboxylates [Pr2(Glu)3(H2O)4] · 10.5H2O ( 1 ), [Pr(Glu)(H2O)2]Cl ( 2 ) and [Er(Glu)(GluH)(H2O)2] ( 3 ) were obtained from the reactions of glutaric acid with PrCl3·6H2O and Er(OH)3, respectively. The crystal structures were determined by single‐crystal X‐ray diffraction. [Pr2(Glu)3(H2O)4] · 10,5H2O crystallizes in the orthorhombic space group Pnma (no. 62) with a = 871.7(4), b = 3105.0(9), c = 1308.3(9) pm and Z = 4. The crystals of [Pr(Glu)(H2O)2]Cl are monoclinic (I2/a; no. 15) with a = 786.2(1), b = 1527.6(2) c = 801.2(1) pm, β = 99.78(1)° and Z = 4. [Er(Glu)(GluH)(H2O)2] crystallizes in the monoclinic space group P21/a (no. 14) with lattice parameters of a = 882.4(1), b = 1375.3(2), c = 1267.4(2) pm, β = 107.13(1)° and Z = 4. The rare‐earth cations have the coordination numbers 10 ( 1 ), 8 + 1 ( 2 ) and 9 ( 3 ). The individual polyhedra are connected to chains and further to sheets in 1 and 2 and to double chains in 3 . Only in the water‐rich compound 1 there are channels that contain crystal water molecules. It, therefore, has a considerably lower density than 2 and 3 .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号