首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   720篇
  免费   4篇
化学   607篇
晶体学   7篇
力学   16篇
数学   28篇
物理学   66篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   24篇
  2015年   24篇
  2014年   44篇
  2013年   32篇
  2012年   32篇
  2011年   121篇
  2010年   53篇
  2009年   46篇
  2008年   46篇
  2007年   48篇
  2006年   44篇
  2005年   54篇
  2004年   51篇
  2003年   39篇
  2002年   3篇
  2001年   9篇
  1999年   20篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1973年   3篇
  1972年   2篇
  1969年   1篇
  1968年   1篇
排序方式: 共有724条查询结果,搜索用时 78 毫秒
101.
This tutorial proposes a comprehensive and rational measurement strategy that provides specific guidance for the application of asymmetric-flow field flow fractionation (A4F) to the size-dependent separation and characterization of nanoscale particles (NPs) dispersed in aqueous media. A range of fractionation conditions are considered, and challenging applications, including industrially relevant materials (e.g., metal NPs, asymmetric NPs), are utilized in order to validate and illustrate this approach. We demonstrate that optimization is material dependent and that polystyrene NPs, widely used as a reference standard for retention calibration in A4F, in fact represent a class of materials with unique selectivity, recovery and optimal conditions for fractionation; thus use of these standards to calibrate retention for other materials must be validated a posteriori. We discuss the use and relevance of different detection modalities that can potentially yield multi-dimensional and complementary information on NP systems. We illustrate the fractionation of atomically precise nanoclusters, which are the lower limit of the nanoscale regime. Conversely, we address the upper size limit for normal mode elution in A4F. The protocol for A4F fractionation, including the methods described in the present work is proposed as a standardized strategy to realize interlaboratory comparability and to facilitate the selection and validation of material-specific measurement parameters and conditions. It is intended for both novice and advanced users of this measurement technology.  相似文献   
102.
Due to the economics of the ethylene market and the subsidized production of fermentation-based ethanol in some countries, use of the ethylene hydration process to make ethanol has been steadily declining. The economics of this process might improve by combining the reaction and separation in a reactive distillation column, whose conceptual design requires a study of the combined chemical and phase equilibrium (CPE) of the reacting system. In this work, the Peng-Robinson-Stryjek-Vera equation of state was combined with the UNIQUAC activity coefficient model through the Wong-Sandler (WS) mixing rules in order to correlate the available experimental data for the vapor-liquid equilibria (VLE) of the ethylene-water, ethylene-ethanol, and ethanol-water binary systems at 200 °C. The interaction energies of the UNIQUAC model and the binary interaction coefficient of the WS mixing rules were used as the fitting parameters. From the optimum values of these parameters, both the VLE and the combined CPE of the ethylene-water-ethanol ternary system were predicted at 200 °C and various pressures. At this temperature, the catalytic activity of a H-pentasil zeolite has already been reported to exhibit a maximum for ethylene hydration, and also the experimentally measured two-phase region of the ternary system is sufficiently wide. By means of the reactive flash method, the chemical equilibrium compositions of the liquid and vapor phases were determined for several pressures, and the equilibrium conversion and the vapor fraction were calculated as functions of the ethylene to water feed mole ratio. It turns out that the vapor-liquid mixed-phase hydration of ethylene achieves equilibrium conversions much higher than those computed for a vapor-phase reaction that would hypothetically occur at the same conditions of pressure and feed mole ratio. It was found that the reactive phase diagram of the ternary system exhibits a critical point at 200 °C and 155 atm.  相似文献   
103.
104.
Complexes [Zn2(HL1)2(CH3COO)2] (1) and [Zn2(L2)2] (2) were synthesized with salicylaldehyde semicarbazone (H2L1) and salicylaldehyde-4-chlorobenzoyl hydrazone (H2LASSBio-1064, H2L2), respectively. The crystal structure of (1) was determined. Upon recrystallization of previously prepared [Zn2(HL2)2(Cl)2] (3) in 1:9 DMSO:acetone crystals of [Zn2(L2)2(H2O)2]·[Zn2(L2)2(DMSO)4] (3a) were obtained. The crystal structure of 3a was also determined. All crystal structures revealed the presence of phenoxo-bridged binuclear zinc(II) complexes.  相似文献   
105.
We propose a process for determining approximated matches, in terms of the bottleneck distance, under color preserving rigid motions, between two colored point sets A,BR2, |A|≤|B|. We solve the matching problem by generating all representative motions that bring A close to a subset B of set B and then using a graph matching algorithm. We also present an approximate matching algorithm with improved computational time. In order to get better running times for both algorithms we present a lossless filtering preprocessing step. By using it, we determine some candidate zones which are regions that contain a subset S of B such that A may match one or more subsets B of S. Then, we solve the matching problem between A and every candidate zone. Experimental results using both synthetic and real data are reported to prove the effectiveness of the proposed approach.  相似文献   
106.
Since its introduction, click chemistry has received a considerable amount of interest. In this contribution, the term click chemistry and the reactions that fall under this term are briefly explained. The main focus of this review is on the application of click chemistry in conjunction with living radical polymerization for the synthesis of advanced macromolecular architectures. Therefore the most powerful living radical polymerization (LRP) techniques are discussed and an overview of click chemistry in the different synthetic schemes is given. A large number of examples are shown that include the synthesis of block copolymers, star-shaped polymers, surface modified particles, and polymer-protein conjugates. The enormous potential of LRP/click chemistry is probably best exemplified by the synthesis of different miktoarm star copolymers, to which a separate section is dedicated.  相似文献   
107.
In this paper we reexamine recent results obtained by our group on the crystallization of nanocomposites and linear and miktoarm star copolymers in order to obtain some general features of their crystallization properties. Different nanocomposites have been prepared where a close interaction between the polymer matrix and the nano-filler has been achieved: in situ polymerized high density polyethylene (HDPE) on carbon nanotubes (CNT); and polycaprolactone (PCL) and poly(ethylene oxide) (PEO) covalently bonded to carbon nanotubes. In all these nanocomposites a “super-nucleation” effect was detected where the CNTs perform a more efficient nucleating action than the self-nuclei of the polymer matrix. It is believed that such a super-nucleation effect stems from the fact that the polymer chains are tethered to the surface of the CNT and can easily form nuclei. For polystyrene (PS) and PCL block copolymers, miktoarm star copolymers (with two arms of PS and two arms of PCL) were found to display more compact morphologies for equivalent compositions than linear PS-b-PCL diblock copolymers. As a consequence, the crystallization of the PCL component always experienced much higher confinement in the miktoarm stars case than in the linear diblock copolymer case. The consequences of the topological confinement of the chains in block copolymers and nanocomposites on the crystallization were the same even though the origin of the effect is different in each case. For nanocomposites a competition between super-nucleation and confinement was detected and the behavior was dominated by one or the other depending on the nano-filler content. At low contents the super-nucleation effect dominates. In both cases, the confinement increases as the nano-filler content increases or the second block content increases (in this case a non-crystallizable block such as PS). The consequences of confinement are: a reduction of both crystallization and melting temperatures, a strong reduction of the crystallinity degree, an increase in the supercooling needed for isothermal crystallization, a depression of the overall crystallization rate and a decrease in the Avrami index until values of one or lower are achieved indicating a nucleation control on the overall crystallization kinetics.  相似文献   
108.
Anionic polymerization is the oldest known living/controlled polymerization methodology that leads to well defined macromolecules. It has been also used, with considerable success, for the synthesis of amphiphilic block copolymers (AmBC), a class of functional copolymers having interesting self-assembling properties and high potential for applications in various technological fields. The use of mild and effective post-polymerization functionalization/chemical modification reactions on block copolymers has substantially increased the synthetic capabilities of anionic polymerization methodologies, toward the creation of a variety of AmBC. In this feature article we review work done on these directions in the last ten years. Some perspectives and future work on this particular field of polymer science are also discussed.  相似文献   
109.
This mini-review describes recent work in the field of glycopolymer synthesis, with a focus on methods that have employed “click chemistry” and controlled polymerization methodology. A variety of carbohydrates with clickable groups such as azide, alkyne, and thiol moieties provide new routes to glycopolymers. Several studies use copper catalyzed azide-alkyne cycloaddition (CuAAC) reactions to synthesize glycomonomers or to incorporate carbohydrates into a clickable polymeric backbone. Alternatively, there are many thiol based click reactions which provide metal-free synthesis, which are discussed in details.  相似文献   
110.
The electro-responsive transdermal drug delivery system was prepared by electrospinning of poly(vinyl alcohol)/poly(acrylic acid)/multi-walled carbon nanotubes (MWCNTs) nanocomposites. The surface modification of MWCNTs was carried out by oxyfluorination to introduce the functional groups on the hydrophobic MWCNTs. The dispersion of MWCNTs and the compatibility with polymer matrices were improved by oxyfluorination. The MWCNT content and oxyfluorination condition played important roles in the swelling and drug release characteristics of nanofibers. The conductivity of nanofibers increased by increasing the content of MWCNTs and performing oxyfluorination with higher oxygen content. Uniform distribution of the oxyfluorinated MWCNTs in the nanofibers was crucial to the electro-responsive swelling and drug releasing behaviors of nanofibers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号