首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1357篇
  免费   57篇
  国内免费   4篇
化学   1135篇
晶体学   10篇
力学   19篇
数学   109篇
物理学   145篇
  2023年   24篇
  2022年   25篇
  2021年   36篇
  2020年   41篇
  2019年   33篇
  2018年   18篇
  2017年   15篇
  2016年   43篇
  2015年   42篇
  2014年   43篇
  2013年   61篇
  2012年   107篇
  2011年   132篇
  2010年   66篇
  2009年   54篇
  2008年   101篇
  2007年   97篇
  2006年   82篇
  2005年   92篇
  2004年   76篇
  2003年   71篇
  2002年   48篇
  2001年   14篇
  2000年   11篇
  1999年   10篇
  1998年   10篇
  1997年   4篇
  1996年   5篇
  1995年   3篇
  1994年   7篇
  1993年   4篇
  1992年   7篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1984年   3篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1971年   1篇
  1965年   1篇
  1881年   1篇
  1876年   1篇
排序方式: 共有1418条查询结果,搜索用时 15 毫秒
11.
Time reversal arrays are becoming common tools whether for detection or tomography. These applications require the measurement of the response from the array to one or several receivers. The most natural way to record the impulse responses for several sources is to generate pulses successively from each emitting point and record simultaneously the signals from the receivers. However, this method is very time consuming or inefficient in terms of signal-to-noise ratio. To overcome this limitation quasi-orthogonal pseudonoise signals like Kasami sequences can be used. For guided wave propagation, a very high degree of orthogonality between the signal is necessary to allow an accurate measure of the whole multipath structure of the transfer function. Hence, in this work, we propose a new family of pseudo-orthogonal signals that is adapted to the environment and more specifically, to highly dispersive media. These adaptive instant records signals are used experimentally to detect targets using the time reversal operator decomposition method. The accuracy of the 15 x 15 transfer functions acquired simultaneously, and therefore the detection capability, are demonstrated in an experimental ultrasonic waveguide as a small-scale model of shallow water propagation including bottom absorption and reverberation.  相似文献   
12.
Speech range profile (SRP) is a graphical display of frequency-intensity occurring interactions during functional speech activity. Few studies have suggested the potential clinical applications of SRP. However, these studies are limited to qualitative case comparisons and vocally healthy participants. The present study aimed to examine the effects of voice disorders on speaking and maximum voice ranges in a group of vocally untrained women. It also aimed to examine whether voice limit measures derived from SRP were as sensitive as those derived from voice range profile (VRP) in distinguishing dysphonic from healthy voices. Ninety dysphonic women with laryngeal pathologies and 35 women with normal voices, who served as controls, participated in this study. Each subject recorded a VRP for her physiological vocal limits. In addition, each subject read aloud the "North Wind and the Sun" passage to record SRP. All the recordings were captured and analyzed by Soundswell's computerized real-time phonetogram Phog 1.0 (Hitech Development AB, T?by, Sweden). The SRPs and the VRPs were compared between the two groups of subjects. Univariate analysis results demonstrated that individual SRP measures were less sensitive than the corresponding VRP measures in discriminating dysphonic from normal voices. However, stepwise logistic regression analyses revealed that the combination of only two SRP measures was almost as effective as a combination of three VRP measures in predicting the presence of dysphonia (overall prediction accuracy: 93.6% for SRP vs 96.0% for VRP). These results suggest that in a busy clinic where quick voice screening results are desirable, SRP can be an acceptable alternate procedure to VRP.  相似文献   
13.
A specific scheme is used for fiber delivery of ultrashort pulses using conventional elements. Starting from a standard femtosecond Ti:Al(2)O(3) oscillator (150 fs @ 830 nm), perfectly compressed ultrashort pulses with a duration of 45 fs are produced at the output of a standard two meter long single-mode fiber. The setup allows compensating independently and simultaneously second and third orders of chromatic dispersion as well as management of self-phase modulation in the fiber. It includes an optimized dispersion compensation line made of the assembly of diffraction gratings and prisms. The unsurpassed performances of the device are experimentally and numerically highlighted. Fiber delivery of sub-30 fs multinanojoule pulses is discussed.  相似文献   
14.
The study of the early oeuvre of the Swiss painter Cuno Amiet (1868–1961) has revealed that, up to 1907, many of his grounds were hand applied and are mainly composed of chalk, bound in protein. These grounds are not only lean and absorbent, but also, as Synchrotron radiation X-ray microtomography has shown, porous. Our approach to the characterization of pore structure and quantity, their connectivity, and homogeneity is based on image segmentation and application of a clustering algorithm to high-resolution X-ray tomographic data. The issues associated with the segmentation of the different components of a ground sample based on X-ray imaging data are discussed. The approach applied to a sample taken from “Portrait of Max Leu” (1899) by Amiet revealed the presence of three sublayers within the ground with distinct porosity features, which had not been observed optically in cross-section. The upper and lower layers are highly porous with important connectivity and thus prone to water uptake/storage. The middle layer however shows low and nonconnected porosity at the resolution level of the X-ray tomography images, so that few direct water absorption paths through the entire sample exist. The potential of the method to characterize porosity and to understand moisture-related issues in paint layer degradation are discussed.  相似文献   
15.
Flame propagation of aluminum–ice (ALICE) mixtures is studied theoretically and experimentally. Both a mono distribution of nano aluminum particles and a bimodal distribution of nano- and micron-sized aluminum particles are considered over a pressure range of 1–10 MPa. A multi-zone theoretical framework is established to predict the burning rate and temperature distribution by solving the energy equation in each zone and matching the temperature and heat flux at the interfacial boundaries. The burning rates are measured experimentally by burning aluminum–ice strands in a constant-volume vessel. For stoichiometric ALICE mixtures with 80 nm particles, the burning rate shows a pressure dependence of rb = aPn, with an exponent of 0.33. If a portion of 80 nm particles is replaced with 5 and 20 μm particles, the burning rate is not significantly affected for a loading density up to 15–25% and decreases significantly beyond this value. The flame thickness of a bimodal-particle mixture is greater than its counterpart of a mono-dispersed particle mixture. The theoretical and experimental results support the hypothesis that the combustion of aluminum–ice mixtures is controlled by diffusion processes across the oxide layers of particles.  相似文献   
16.
Double-quantum filtered MAS NMR spectra of an isolated homonuclear spin-1/2 pair are considered, at and away from rotational resonance conditions. The pulse sequence used is the solid-state NMR equivalent of double-quantum filtered COSY, known from solution-state NMR. The 119Sn spin pair in [(chex3Sn)2S] is characterized by a difference in isotropic chemical shielding smaller than the two chemical shielding anisotropies and by direct dipolar and isotropic J-coupling constants of similar magnitudes. At rotational resonance, one-dimensional double-quantum filtered 119Sn lineshapes yield the relative orientation of the two 119Sn chemical shielding tensors. Good double-quantum filtration efficiencies are found at and away from rotational resonance conditions, despite the presence of large chemical shielding anisotropies. Numerical simulations illustrate the interplay of the direct dipolar and J-coupling pathways and identify the latter as the main pathway even at rotational resonance conditions.  相似文献   
17.
The combustion of bimodal nano/micron-sized aluminum particles with air is studied both analytically and experimentally in a well-characterized laminar particle-laden flow. Experimentally, an apparatus capable of producing Bunsen-type premixed flames was constructed to investigate the flame characteristics of bimodal-particle/air mixtures. The flame speed is positively affected by increasing the mass fraction of nano particles in the fuel formulation despite the lower flame luminosity and thicker flame zone. Theoretically, the flames are assumed to consist of several different regimes for fuel-lean mixture, including the preheat, flame, and post flame zones. The flame speed and temperature distribution are derived by solving the energy equation in each regime and matching the temperature and heat flux at the interfacial boundaries. The analysis allows for the investigation of the effects of particle composition and equivalence ratio on the burning characteristics of aluminum-particle/air mixtures. Reasonable agreement between theoretical results and experimental data was obtained in terms of flame speed. The flame structure of a bimodal particle dust cloud may display either an overlapping or a separated configuration, depending on the combustion properties of aluminum particles at different scales. At low percentages of nano particles in the fuel formulation, the flame exhibits a separated spatial structure with a wider flame regime. At higher nano-particle loadings, overlapping flame configurations are observed.  相似文献   
18.
ABSTRACT

We present a theoretical framework and parameterisation of intermolecular potentials for aqueous electrolyte solutions using the statistical associating fluid theory based on the Mie interaction potential (SAFT-VR Mie), coupled with the primitive, non-restricted mean-spherical approximation (MSA) for electrolytes. In common with other SAFT approaches, water is modelled as a spherical molecule with four off-centre association sites to represent the hydrogen-bonding interactions; the repulsive and dispersive interactions between the molecular cores are represented with a potential of the Mie (generalised Lennard-Jones) form. The ionic species are modelled as fully dissociated, and each ion is treated as spherical: Coulombic ion–ion interactions are included at the centre of a Mie core; the ion–water interactions are also modelled with a Mie potential without an explicit treatment of ion–dipole interaction. A Born contribution to the Helmholtz free energy of the system is included to account for the process of charging the ions in the aqueous dielectric medium. The parameterisation of the ion potential models is simplified by representing the ion–ion dispersive interaction energies with a modified version of the London theory for the unlike attractions. By combining the Shannon estimates of the size of the ionic species with the Born cavity size reported by Rashin and Honig, the parameterisation of the model is reduced to the determination of a single ion–solvent attractive interaction parameter. The resulting SAFT-VRE Mie parameter sets allow one to accurately reproduce the densities, vapour pressures, and osmotic coefficients for a broad variety of aqueous electrolyte solutions; the activity coefficients of the ions, which are not used in the parameterisation of the models, are also found to be in good agreement with the experimental data. The models are shown to be reliable beyond the molality range considered during parameter estimation. The inclusion of the Born free-energy contribution, together with appropriate estimates for the size of the ionic cavity, allows for accurate predictions of the Gibbs free energy of solvation of the ionic species considered. The solubility limits are also predicted for a number of salts; in cases where reliable reference data are available the predictions are in good agreement with experiment.  相似文献   
19.
The investigation of ultrafast dynamics, taking place on the few to sub‐picosecond time scale, is today a very active research area pursued in a variety of scientific domains. With the recent advent of X‐ray free‐electron lasers (XFELs), providing very intense X‐ray pulses of duration as short as a few femtoseconds, this research field has gained further momentum. As a consequence, the demand for access strongly exceeds the capacity of the very few XFEL facilities existing worldwide. This situation motivates the development of alternative sub‐picosecond pulsed X‐ray sources among which femtoslicing facilities at synchrotron radiation storage rings are standing out due to their tunability over an extended photon energy range and their high stability. Following the success of the femtoslicing installations at ALS, BESSY‐II, SLS and UVSOR, SOLEIL decided to implement a femtoslicing facility. Several challenges were faced, including operation at the highest electron beam energy ever, and achievement of slice separation exclusively with the natural dispersion function of the storage ring. SOLEIL's setup also enables, for the first time, delivering sub‐picosecond pulses simultaneously to several beamlines. This last feature enlarges the experimental capabilities of the facility, which covers the soft and hard X‐ray photon energy range. In this paper, the commissioning of this original femtoslicing facility is reported. Furthermore, it is shown that the slicing‐induced THz signal can be used to derive a quantitative estimate for the degree of energy exchange between the femtosecond infrared laser pulse and the circulating electron bunch.  相似文献   
20.

Background  

It is well established that nucleus basalis magnocellularis (NbM) lesions impair performance on tests of sustained attention. Previous work from this laboratory has also demonstrated that pedunculopontine tegmental nucleus (PPTg) lesioned rats make more omissions on a test of sustained attention, suggesting that it might also play a role in mediating this function. However, the results of the PPTg study were open to alternative interpretation. We aimed to resolve this by conducting a detailed analysis of the effects of damage to each brain region in the same sustained attention task used in our previous work. Rats were trained in the task before surgery and post-surgical testing examined performance in response to unpredictable light signals of 1500 ms and 4000 ms duration. Data for PPTg lesioned rats were compared to control rats, and rats with 192 IgG saporin infusions centred on the NbM. In addition to operant data, video data of rats' performance during the task were also analysed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号