首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   17篇
  国内免费   12篇
化学   104篇
晶体学   2篇
力学   5篇
数学   6篇
物理学   13篇
  2024年   1篇
  2023年   3篇
  2022年   6篇
  2021年   1篇
  2020年   7篇
  2019年   1篇
  2018年   1篇
  2017年   6篇
  2016年   4篇
  2015年   6篇
  2014年   5篇
  2013年   9篇
  2012年   13篇
  2011年   10篇
  2010年   11篇
  2009年   14篇
  2008年   8篇
  2007年   1篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  1999年   4篇
  1998年   2篇
  1993年   1篇
  1990年   1篇
排序方式: 共有130条查询结果,搜索用时 15 毫秒
21.
The supported nano-TiO2 electrode was prepared by sol–gel and hydrothermal method, and the photoelectrocatalytic degradation of 4-chlorophenol (4-CP) under UV irradiation has been investigated to reveal the roles of hydroxyl radicals and dissolved oxygen species for TiO2-assisted photocatalytic reactions. The degradation kinetics, the formation and decay of intermediates, the isotopic tracer experiments with H2O18, the removal yield of total organic carbon and the formation of active radical species in the presence of oxygen or not were examined by HPLC, GC–MS, TOC and spin-trap ESR spectrometry. It was found that most of OH radicals in the primary hydroxylated intermediates derived from the oxidation of adsorbed H2O or HO by photo-holes in the electrochemically assisted TiO2 photocatalytic system. It also indicates that the enhancement in the separation efficiency of photogenerated charges by applying a positive bias (+0.5 V vs SCE) has little role in the following decomposition and mineralization of these hydroxylated intermediates in the absence of oxygen. According to above experimental results, the pathway of 4-CP photocatalytic degradation was deduced initially. Due to the combined effect of OH radicals and dissolved oxygen species, the hydroxylated 4-chlorphenol, via cis, cis-3-chloromuconic acid, was decomposed into low molecular weight acid and CO2.  相似文献   
22.
23.
24.
The aerobic decarboxylation of saturated carboxylic acids (from C2 to C5) in water by TiO2 photocatalysis was systematically investigated in this work. It was found that the split of C1? C2 bond of the acids to release CO2 proceeds sequentially (that is, a C5 acid sequentially forms C4 products, then C3 and so forth). As a model reaction, the decarboxylation of propionic acid to produce acetic acid was tracked by using isotopic‐labeled H218O. As much as ≈42 % of oxygen atoms of the produced acetic acids were from dioxygen (16O2). Through diffuse reflectance FTIR measurements (DRIFTS), we confirmed that an intermediate pyruvic acid was generated prior to the cut‐off of the initial carboxyl group; this intermediate was evidenced by the appearance of an absorption peak at 1772 cm?1 (attributed to C?O stretch of α‐keto group of pyruvic acid) and the shift of this peak to 1726 cm?1 when H216O was replaced by H218O. Consequently, pyruvic acid was chosen as another model molecule to observe how its decarboxylation occurs in H216O under an atmosphere of 18O2. With the α‐keto oxygen of pyruvic acid preserved in the carboxyl group of acetic acid, ≈24 % new oxygen atoms of the produced acetic acid were from molecular oxygen at near 100 % conversion of pyruvic acid. The other ≈76 % oxygen atoms were provided by H2O through hole/OH radical oxidation. In the presence of conduction band electrons, O2 can independently accomplish such C1? C2 bond cleavage of pyruvic acid to generate acetic acid with ≈100 % selectivity, as confirmed by an electrochemical experiment carried out in the dark. More importantly, the ratio of O2 participation in decarboxylation increased along with the increase of pyruvic acid conversion, indicating the differences between non‐substituted acids and α‐keto acids. This also suggests that the O2‐dependent decarboxylation competes with hole/OH‐radical‐promoted decarboxylation and depends on TiO2 surface defects at which Ti4c sites are available for the simultaneous coordination of substrates and O2.  相似文献   
25.
In order to study the relationship between structure and properties, multiblock copolymers composed of poly(butylene succinate) (PBS) and poly (1,2-propylene succinate) (PPSu) have been synthesized by chain-extension at various molar ratios of hexamethylene diisocyanate (HDI) to polyester-diols, which have been abbreviated as R-values in this paper. Molecular weights of soluble fractions, gel fractions and crosslink densities have been determined. Thermal properties, mechanical properties and biodegradability have been studied and correlated with R-values. Crystallization of copolymers becomes difficult with increasing R-value. Tensile strength, flexural strength and flexural modulus tend to increase with increasing R-value up to 1.2, and vary little when R-value increases from 1.2 to 1.3, then decrease with further increase in R-value. Impact strength achieves a maximum value at R-value of 1.3. Biodegradation rate reaches a minimum value when R-value is 1.1. Biodegradation has been studied systematically by attenuated total reflectance Fourier transform infrared (ATR-FTIR), 1H NMR and SEM.  相似文献   
26.
The chemical bonding and elastic properties of Ti2CdC were investigated by means of a first-principles pseudopotential total energy method. The calculated results for the lattice constants and internal coordinate agree with experimental values very well. Ti2CdC is conducting, and the Cd-d states have little effect on the chemical bonding. The elastic properties were estimated from the individual elastic constants by Voigt approximation. The calculated shear-modulus of Ti2CdC, 70 GPa, is the lowest value among all MAX phases. The lower shear-modulus and shear-modulus-to-bulk-modulus ratio are related to the weaker Ti–Cd bond, which indicates the lower coefficient of friction. This suggests that Ti2CdC would be a potential electrical frictional material.  相似文献   
27.
本文叙述了一种四元淋洗液同时分离和测定七种金属离子的色谱条件。探讨了各离子的保留行为与淋洗液pH值和络合剂浓度间的变化规律。方法用于镀铬槽液中金属杂质分析,相对标准偏差小于2.0%,相对误差不超过3.5%。  相似文献   
28.
采用两步法制备生物质石墨烯/LaFeO3纳米复合材料(石墨烯加入量分别为LaFeO3的1;、3;、5;、7;),应用差热-热重分析、X射线衍射(XRD)、扫描电子显微镜(SEM)等测试手段对生物质石墨烯/LaFeO3纳米复合材料样品的物相及微观结构进行了表征;采用傅里叶变换红外光谱仪对样品进行了红外分析(FTIR);研究了生物质石墨烯加入量对生物质石墨烯/LaFeO3复合材料降解亚甲基蓝光催化降解率的影响.结果 表明:通过两步法所制备的生物质石墨烯/LaFeO3纳米光催化剂稳定性好,具有高效光催化活性;生物质石墨烯的加入提高了LaFeO3对亚甲基蓝的光催化降解率;采用175W荧光高压汞灯光照30 min时,加入7;生物质石墨烯的LaFeO3样品对亚甲基蓝的光催化降解率最高达到56;,比纯LaFeO3光催化降解率高出50;.  相似文献   
29.
30.
The instability and premature charge reversal at pH 7.4 have become the major limitations of charge‐reversal delivery systems. To address this problem, graft copolymer of poly(butylene succinate)‐g‐cysteamine‐bi‐poly(ethylene glycol) (PBS‐g‐CS‐bi‐PEG, bi = benzoic imine bond) was designed and synthesized through facile thiol‐ene click reaction and subsequent Schiff's base reaction. Then, PBS‐g‐CS‐bi‐PEG and carboxyl‐functionalized polyester of poly(butylene succinate)‐g‐3‐mercaptopropionic acid (PBS‐g‐MPA) co‐assemble in aqueous solution to give PEG shell‐sheddable charge‐reversal micelles with sizes of 85–103 nm and low polydispersity of 0.11–0.12. Interestingly, the PBS‐g‐MPA/CS‐bi‐PEG micelles could sensitively and arbitrarily switch their surface charges between negative and positive status in response to pH fluctuation via reversible protonation and deprotonation of carboxyl and amino groups, which endows the desired stability of co‐assembly micelles either during long‐term storage or under physiological conditions. Doxorubicin (DOX) was loaded into PBS‐g‐MPA/CS‐bi‐PEG micelles with a high drug‐loading content of 10.2% and entrapment efficiency of 68% as a result of electrostatic attraction. In vitro release studies revealed that less than 25% of DOX was released within 24 h in the environment mimicking the physiological condition, whereas up to 81% of DOX was released in 24 h under weak‐acid condition resembling microenvironment in endosome/lysosome. In vitro cytotoxicity study suggested that blank PBS‐g‐MPA/CS‐bi‐PEG micelles possessed excellent biocompatibility, while DOX‐loaded PBS‐g‐MPA/CS‐bi‐PEG micelles showed significant cytotoxicity with half‐maximal inhibitory concentration (IC50) of 1.55–1.67 μg DOX equiv/mL. This study provides a facile and effective approach for the preparation of novel charge‐reversal micelles with switchable charges and excellent biocompatibility, which are highly promising to be used as safe nanocarriers for efficient intracellular drug delivery. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2036–2046  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号