首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57945篇
  免费   13335篇
  国内免费   6278篇
化学   58244篇
晶体学   770篇
力学   1796篇
综合类   421篇
数学   4946篇
物理学   11381篇
  2024年   78篇
  2023年   478篇
  2022年   988篇
  2021年   1114篇
  2020年   2164篇
  2019年   3445篇
  2018年   1871篇
  2017年   1625篇
  2016年   4414篇
  2015年   4716篇
  2014年   4764篇
  2013年   5860篇
  2012年   4843篇
  2011年   4270篇
  2010年   4469篇
  2009年   4368篇
  2008年   4019篇
  2007年   3280篇
  2006年   2832篇
  2005年   2800篇
  2004年   2409篇
  2003年   2149篇
  2002年   3024篇
  2001年   2214篇
  2000年   1918篇
  1999年   865篇
  1998年   418篇
  1997年   297篇
  1996年   306篇
  1995年   223篇
  1994年   246篇
  1993年   165篇
  1992年   133篇
  1991年   156篇
  1990年   133篇
  1989年   73篇
  1988年   66篇
  1987年   60篇
  1986年   56篇
  1985年   64篇
  1984年   32篇
  1983年   33篇
  1982年   23篇
  1981年   14篇
  1980年   11篇
  1979年   14篇
  1978年   8篇
  1976年   11篇
  1971年   7篇
  1936年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
DFT computations have been performed to investigate the mechanism of H2‐assisted chain transfer strategy to functionalize polypropylene via Zr‐catalyzed copolymerization of propylene and p‐methylstyrene (pMS). The study unveils the following: (i) propylene prefers 1,2‐insertion over 2,1‐insertion both kinetically and thermodynamically, explaining the observed 1,2‐insertion regioselectivity for propylene insertion. (ii) The 2,1‐inserion of pMS is kinetically less favorable but thermodynamically more favorable than 1,2‐insertion. The observation of 2,1‐insertion pMS at the end of polymer chain is due to thermodynamic control and that the barrier difference between the two insertion modes become smaller as the chain length becomes longer. (iii) The pMS insertion results in much higher barriers for subsequent either propylene or pMS insertion, which causes deactivation of the catalytic system. (iv) Small H2 can react with the deactivated [Zr]?pMS?PPn facilely, which displace functionalized pMS?PPn chain and regenerate [Zr]? H active catalyst to continue copolymerization. The effects of counterions are also discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 576–585  相似文献   
32.
Fully utilizing solar energy for catalysis requires the integration of conversion mechanisms and therefore delicate design of catalyst structures and active species. Herein, a MOF crystal engineering method was developed to controllably synthesize a copper–ceria catalyst with well-dispersed photoactive Cu-[O]-Ce species. Using the preferential oxidation of CO as a model reaction, the catalyst showed remarkably efficient and stable photoactivated catalysis, which found practical application in feed gas treatment for fuel cell gas supply. The coexistence of photochemistry and thermochemistry effects contributes to the high efficiency. Our results demonstrate a catalyst design approach with atomic or molecular precision and a combinatorial photoactivation strategy for solar energy conversion.  相似文献   
33.
The modulation of electron density is an effective option for efficient alternative electrocatalysts. Here, p‐n junctions are constructed in 3D free‐standing FeNi‐LDH/CoP/carbon cloth (CC) electrode (LDH=layered double hydroxide). The positively charged FeNi‐LDH in the space‐charge region can significantly boost oxygen evolution reaction. Therefore, the j at 1.485 V (vs. RHE) of FeNi‐LDH/CoP/CC achieves ca. 10‐fold and ca. 100‐fold increases compared to those of FeNi‐LDH/CC and CoP/CC, respectively. Density functional theory calculation reveals OH? has a stronger trend to adsorb on the surface of FeNi‐LDH side in the p‐n junction compared to individual FeNi‐LDH further verifying the synergistic effect in the p‐n junction. Additionally, it represents excellent activity toward water splitting. The utilization of heterojunctions would open up an entirely new possibility to purposefully regulate the electronic structure of active sites and promote their catalytic activities.  相似文献   
34.
We report on the first examples of isolated silanol–silanolate anions, obtained by utilizing weakly coordinating phosphazenium counterions. The silanolate anions were synthesized from the recently published phosphazenium hydroxide hydrate salt with siloxanes. The silanol–silanolate anions are postulated intermediates in the hydroxide‐mediated polymerization of aryl and alkyl siloxanes. The silanolate anions are strong nucleophiles because of the weakly coordinating character of the phosphazenium cation, which is perceptible in their activity in polysiloxane depolymerization.  相似文献   
35.
36.
We describe the synthesis and the physical properties of polyaromatic hydrocarbons (PAHs) containing a phosphorus atom at the edge. In particular, the impact of the successive addition of aromatic rings on the electronic properties was investigated by experimental (UV/Vis absorption, fluorescence, cyclic voltammetry) and theoretical studies (DFT). The physical properties recorded in solution and in the solid state showed that the P‐containing PAHs exhibit properties expected for an emitter in white organic light‐emitting diodes (WOLEDs).  相似文献   
37.
1,3-Azaprotio transfer of propargylic α-ketocarboxylate oximes, a new type of alkynyl oximes featuring an ester tether, has been explored by taking advantage of gold catalysis. The incorporation of an oxygen atom to the chain of alkynyl oximes led to the formation of two different oxa-cyclic nitrones. It was found that internal alkynyl oximes with an E-configuration deliver five-membered nitrones, whereas terminal alkynyl oximes with an E-configuration afford six-membered nitrones. DFT calculations on four possible pathways supported a stepwise formation of C−N and C−H bonds, in which a 1,3-acyloxy-migration competes with the 1,3-azaprotio-transfer, especially in the case of internal alkynyl oximes. The relative nucleophilic properties of oxygen in the carbonyl group and the nitrogen in the oxime, the electronic effects of alkynes, and the influence of the ring system have been investigated computationally.  相似文献   
38.
Planar luminogens have encountered difficulties in overcoming intrinsic aggregation-caused emission quenching by intermolecular π-π stacking interactions. Although excited-state double-bond reorganization (ESDBR) can guide us on designing planar aggregation-induced emission (AIE) luminogens (AIEgens), its mechanism has yet been elucidated. Major challenges in the field include methods to efficiently restrict ESDBR and enhance AIE performance without using bulky substituents (e.g., tetraphenylethylene and triphenylamine). In this study, we rationally developed fluoro-substituent AIEgens with stronger intermolecular H-bonding interaction for restricted molecular motions and increased crystal density, leading to decreased nonradiative decay rate by one order of magnitude. The adjusted ESDBR properties also show a corresponding response to variation in viscosity. Furthermore, their aggregation-induced reactive oxygen species (ROS) generations have been discovered. The application of such planar AIEgen in treating multidrug-resistant bacteria has been demonstrated in a mouse model. The relationship between ROS generation and distinct E/Z-configurational stacking behaviors have been further understood, providing a design principle for synthesizing planar AIEgen-based photosensitizers.  相似文献   
39.
Functional, degradable polymers were synthesized via the copolymerization of vinyl acetate (VAc) and 2‐methylene‐1,3‐dioxepane (MDO) using a macro‐xanthate CTA, poly(N‐vinylpyrrolidone), resulting in the formation of amphiphilic block copolymers of poly(NVP)‐b‐poly(MDO‐co‐VAc). The behavior of the block copolymers in water was investigated and resulted in the formation of self‐assembled nanoparticles containing a hydrophobic core and a hydrophilic corona. The size of the resultant nanoparticles was able to be tuned with variation of the hydrophilic and hydrophobic segments of the core and corona by changing the incorporation of the macro‐CTA as well as the monomer composition in the copolymers, as observed by Dynamic Light Scattering, Static Light Scattering, and Transmission Electron Microscopy analyses. The concept was further applied to a VAc derivative monomer, vinyl bromobutanoate, to incorporate further functionalities such as fluorescent dithiomaleimide groups throughout the polymer backbone using azidation and “click” chemistry as postpolymerization tools to create fluorescently labeled nanoparticles. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2699–2710  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号