首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5876篇
  免费   238篇
  国内免费   28篇
化学   3956篇
晶体学   71篇
力学   161篇
数学   437篇
物理学   1517篇
  2024年   5篇
  2023年   35篇
  2022年   122篇
  2021年   154篇
  2020年   104篇
  2019年   106篇
  2018年   86篇
  2017年   93篇
  2016年   149篇
  2015年   170篇
  2014年   220篇
  2013年   377篇
  2012年   422篇
  2011年   456篇
  2010年   293篇
  2009年   244篇
  2008年   426篇
  2007年   364篇
  2006年   375篇
  2005年   308篇
  2004年   288篇
  2003年   237篇
  2002年   235篇
  2001年   168篇
  2000年   111篇
  1999年   95篇
  1998年   54篇
  1997年   29篇
  1996年   45篇
  1995年   56篇
  1994年   34篇
  1993年   38篇
  1992年   29篇
  1991年   15篇
  1990年   31篇
  1989年   29篇
  1988年   14篇
  1987年   15篇
  1985年   22篇
  1984年   10篇
  1983年   11篇
  1982年   14篇
  1981年   13篇
  1980年   10篇
  1979年   3篇
  1978年   4篇
  1977年   5篇
  1975年   3篇
  1974年   3篇
  1969年   3篇
排序方式: 共有6142条查询结果,搜索用时 15 毫秒
41.
Here we report the first example of catalytic metallogels, which are formed irreversibly in dimethylsulfoxide via the creation of cross-linked, three-dimensional coordination polymer networks by using transition-metal ions with multiple sites available for coordination and multidentate ligands. Conformational flexibility of the ligands and slow formation of the coordination polymers apparently favor the gelation. These metallogels are stable in water and most organic solvents and can catalyze the oxidation of benzyl alcohol to benzaldehyde by using their PdII moieties as the catalytic centers. The best catalytic turnover of the metallogel is twice that of [Pd(OAc)2] under similar reaction conditions.  相似文献   
42.
43.
The visible-light-induced degradation reaction of 4-chlorophenol (4-CP) was investigated in aqueous suspension of pure TiO2. Contrary to common expectations, 4-CP could be degraded under visible illumination (lambda > 420 nm), generating chlorides and CO2 concomitantly. The observed visible reactivity was not due to the presence of trace UV light since the visible-light-induced reactions exhibited behaviors distinguished from those of UV-induced reactions. Dichloroacetate could not be degraded under visible light, whereas it degraded with a much faster rate than 4-CP under UV irradiation. The addition of tert-butyl alcohol, a common OH radical scavenger, did not affect the visible reactivity of 4-CP, which indicates that OH radicals are not involved. Other phenolic compounds such as phenol and 2,4-dichlorophenol were similarly degraded under visible light. The surface complexation between phenolic compounds and TiO2 appears to be responsible for the visible light reactivity. Diffuse reflectance UV-vis spectra showed that 4-CP adsorbed on TiO2 powder induced visible light absorption. The visible light reactivity among several TiO2 samples was apparently correlated with the surface area of TiO2. The visible-light-induced photocurrents on a TiO2 electrode could be obtained only in the presence of 4-CP. It is proposed that a direct electron transfer from surface-complexed phenol to the conduction band of TiO2 upon absorbing visible light (through ligand-to-metal charge transfer) initiates the oxidative degradation of phenolic compounds. When the surface complex formation was hindered by surface fluorination, surface platinization, and high pH, the visible-light-induced degradation of 4-CP was inhibited. The evidence of visible-light-induced reactions and the experimental conditions affecting the visible reactivity were discussed in detail.  相似文献   
44.
The tau protein is a highly soluble and natively unfolded protein. Under pathological conditions, tau undergoes multiple post-translational modifications (PTMs) and conformational changes to form insoluble filaments, which are the proteinaceous signatures of tauopathies. To dissect the crosstalk among tau PTMs during the aggregation process, we phosphorylated and ubiquitylated recombinant tau in vitro using GSK3β and CHIP, respectively. The resulting phospho–ub-tau contained conventional polyubiquitin chains with lysine 48 linkages, sufficient for proteasomal degradation, whereas unphosphorylated ub-tau species retained only one–three ubiquitin moieties. Mass-spectrometric analysis of in vitro reconstituted phospho–ub-tau revealed seven additional ubiquitylation sites, some of which are known to stabilize tau protofilament stacking in the human brain with tauopathy. When the ubiquitylation reaction was prolonged, phospho–ub-tau transformed into insoluble hyperubiquitylated tau species featuring fibrillar morphology and in vitro seeding activity. We developed a small-molecule inhibitor of CHIP through biophysical screening; this effectively suppressed tau ubiquitylation in vitro and delayed its aggregation in cultured cells including primary cultured neurons. Our biochemical findings point to a “multiple-hit model,” where sequential events of tau phosphorylation and hyperubiquitylation function as a key driver of the fibrillization process, thus indicating that targeting tau ubiquitylation may be an effective strategy to alleviate the course of tauopathies.

Multiple-hit model for tau aggregation, where sequential events of tau phosphorylation and hyperubiquitylation function as a key driver of the fibrillization process.  相似文献   
45.
Abstract— Irradiation of thin films consisting of 4,5',8-trimethylpsoralen (TMP), adenosine and small amounts of alcohols led to TMP-alcohol photoadducts in addition to TMP-adenosine photoadducts. Four TMP-ethanol and two TMP-methanol adducts have been separated and characterized. Covalent bonds were formed between the 4-carbon of TMP and the α-carbon to the hydroxy group in the alcohols. The TMP-alcohol photoadducts were formed only in the TMP film containing small amounts of alcohol and adenosine. Furthermore, no photoadduct of TMP and ribose was detected upon photolysis of a TMP-ribose film, suggesting that the adenine moiety plays a specific role in the reaction. The interaction of adenosine with psoralens in a dry film may be related to the DNA sequence selectivity observed for the photoreaction of psoralens with DNA.  相似文献   
46.
The surfactants sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) displace human serum albumin (HSA) from loosely packed self-assembled monolayers (SAM) of hydrophobic alkyl chains by different means. Removal of HSA is of interest because previous work has suggested that the adsorption of HSA to such loosely packed SAMs may be sufficiently tenacious to offer opportunities for surface passivation. While HSA remains on the surface after exposure to SDS and rinsing, no protein remains after exposure to CTAB and rinsing. X-ray reflectivity and X-ray photoelectron spectroscopy measurements indicate that CTAB molecules remain interdigitated in the loosely packed SAM after rinsing, suggesting that CTAB is more effective in removing the HSA because it interacts more strongly with the SAM.  相似文献   
47.
There is increasing interest in developing single-walled carbon nanotubes (SWNTs)-based optical biosensors for remote or in vitro and in vivo sensing because the near-IR optical properties of SWNTs are very sensitive to surrounding environmental changes. Many enzyme-catalyzed reactions yield hydrogen peroxide (H(2)O(2)) as a product. To our knowledge, there is no report on the interaction of H(2)O(2) with SWNTs from the optical sensing point of view. Here, we study the reaction of H(2)O(2) with an aqueous suspension of water-soluble (ws) HiPco SWNTs encased in the surfactant sodium dodecyl sulfate (SDS). The SWNTs are optically sensitive to hydrogen peroxide in pH 6.0 buffer solutions through suppression of the near-IR absorption band intensity. Interestingly, the suppressed spectral intensity of the nanotubes recovers by increasing the pH, by decomposing the H(2)O(2) into H(2)O and O(2) with the enzyme catalase, and by dialytically removing H(2)O(2). Preliminary studies on the mechanisms suggest that H(2)O(2) withdraws electrons from the SWNT valence band by charge transfer, which suppresses the nanotube spectral intensity. The findings suggest possible enzyme-assisted molecular recognition applications by selective optical detection of biological species whose enzyme-catalyzed products include hydrogen peroxide.  相似文献   
48.
The separation procedure for Ag, B, Cd, Dy, Eu and Sm as impurities in Gd matrix using ICP-AES technique with an extraction chromatographic column has been developed. The spectral interference of the Gd matrix on the elements was eliminated using a chromatography technique with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC-88A) as the mobile phase and XAD-16 resin as the stationary phase. Ag+, B4O72−, and Cd2+ were eluted with 0.1 M HNO3, while rare earth ions were not. The best eluent for separating Eu and Sm in the Gd matrix was 0.3 M HNO3. The limit of quantitation for these elements was 0.6-3.0 ng mL−1. The recovery of Ag, B, and Cd was 90-104% using 0.1 M HNO3 as the eluent, while that of Eu, Gd, and Sm ranged from 100 to 102% with 0.3 M HNO3. Dy was recovered quantitatively with 4 M HNO3. The relative standard deviation of the methods for a set of three replicates was between 1.0 and 15.4% for the synthetic and standard Gd solutions. The proposed separation procedure was used to measure Ag, B, Cd, Dy, Eu, and Sm in a standard Gd solution.  相似文献   
49.
Visible light active platinum-ion-doped TiO2 photocatalyst   总被引:6,自引:0,他引:6  
Platinum-ion-doped TiO2 (Pt(ion)-TiO2) was synthesized by a sol-gel method, and its visible light photocatalytic activities were successfully demonstrated for the oxidative and reductive degradation of chlorinated organic compounds. Pt(ion)-TiO2 exhibited a yellow-brown color, and its band gap was lower than that of undoped TiO2 by about 0.2 eV. The flat band potential of Pt(ion)-TiO2 was positively shifted by 50 mV compared with that of undoped TiO2. X-ray absorption spectroscopy and X-ray photoelectron spectroscopy analyses showed that the Pt ions substituted in the TiO2 lattice were present mainly in the Pt(IV) state with some Pt(II) on the sample surface. Pt(ion)-TiO2 exhibited higher photocatalytic activities than undoped TiO2 under UV irradiation as well. The visible light activity of Pt(ion)-TiO2 was strongly affected by the calcination temperature and the concentration of Pt ion dopant, which were optimal at 673 K and 0.5 atom %, respectively. Under visible irradiation, Pt(ion)-TiO2 degraded dichloroacetate and 4-chlorophenol through an oxidative path and trichloroacetate via a reductive path. The activity of Pt(ion)-TiO2 was not reduced when used repeatedly under visible light. However, visible-light-illuminated Pt(ion)-TiO2 could not degrade substrates such as tetramethylammonium and trichloroethylene, which are degraded with UV-illuminated TiO2. The characteristics and reactivities of Pt(ion)-TiO2 as a new visible light photocatalyst were investigated in various ways and discussed in detail.  相似文献   
50.
Choi JK  Chae HZ  Hwang SY  Choi HI  Jin LT  Yoo GS 《Electrophoresis》2004,25(7-8):1136-1141
A fast and matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS) compatible protein staining method in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (1- and 2-D SDS-PAGE) is described. It is based on the counterion dye staining method that employs oppositely charged two dyes, zincon (ZC) and ethyl violet (EV) to form an ion-pair complex. The protocol, including fixing, staining and quick washing steps, can be completed in 1-1.5 h depending upon gel thickness. It has a sensitivity of 4-8 ng, comparable to that of colloidal Coomassie Brilliant Blue G (CBBG) staining with phosphoric acid in the staining solution. The counterion dye stain does not induce protein modifications that complicate interpretation of peptide mapping data from MS. Considering the speed, sensitivity and compatibility with MS, the counterion dye stain may be more practical than any other dye-based protein stains for routine proteomic researches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号