Nine impurities in amikacin sulfate made in China were separated and identified by HPLC–MSn for the further improvement of official monographs in pharmacopoeias. The mass fragmentation patterns and structural assignment of these impurities were studied. The column was Acchrom Click XIon (250 × 4.6 mm, 5 μm). The mobile phase was 250 m mol L−1 ammonium formate and 1.4 % formic acid aqueous solution–acetonitrile–water (30:48:22). In positive mode, full scan LC–MS was first performed in order to obtain the m/z value of the protonated molecules, LC–MS–MS was then carried out on the compounds of interest on AB SCIEX 4000 Q TRAP™ composite triple quadrupole/linear ion trap tandem mass spectrometer. The complete fragmentation patterns of nine impurities were studied and used to obtain information about the structure of these impurities. The structures of nine impurities in amikacin sulfate were deduced based on the HPLC–MSn data, in which three impurities were novel impurities. Three novel impurities were 1-N-(l-4-amino-2-hydroxybutyryl) derivative of 4-O-(6-AG)DS, 1-N-(l-4-amino-2-hydroxybutyryl) derivative of 6-O-(3-AG)DS and 1-N-(l-4-amino-2-hydroxybutyryl) derivative of kanamycin D.
Two new triterpene saponins, named hippophosides E and F ( 1 and 2 , resp.), together with two known compounds, were isolated from the seed residue of Hippophae rhamnoides L. Their structures were elucidated on the basis of chemical and spectral analysis, including 1D‐ and 2D‐NMR and HR‐MS experiments, and by comparison with literature data. 相似文献
We report on a new electrochemical immunosensor for the carcinoembryonic antigen (CEA; a model analyte). First, poly(o-phenylenediamine) nanospheres (PPDNSs) were synthesized by using a wet-chemistry method. The nanospheres were utilized as the support for immobilizing horseradish peroxidase-labeled polyclonal rabbit anti-human CEA antibody (HRP-anti-CEA) on a pretreated glassy carbon electrode (GCE) using glutaraldehyde as a crosslinker. In the presence of target CEA, an antigen-antibody immunocomplex formed on the electrode. This results in a partial inhibition of the active center of HRP and decreases the activity of HRP in terms of H2O2 reduction. The performance and factors influencing the performance of the immunoelectrode were studied. Under optimal conditions, the reduction current obtained from the anti-CEA-conjugated HRP (best at a working voltage of −265 mV vs. Ag/AgCl) is proportional to the CEA concentration in the 0.01 to 60 ng mL−1 range, with a detection limit of 3.2 pg mL−1. Non-specific adsorption was not observed. Relative standard deviations for intra-assay and inter-assay are <8.3 % and <9.7 %, respectively. The method was applied to the analysis of nine human serum samples, and a good relationship was found between the electrochemical immunoassay and the commercialized ELISA kit for human CEA.
An efficient copper‐catalyzed N‐arylation reactions of imidazole, indole, and triazole with aryl or heteroaryl halides using cyclen derivatives as efficient organic base and ligand at moderate temperature have been investigated. The cross‐couplings proceed smoothly with good to excellent yields. 相似文献
Hetero-dimeric magnetic nanoparticles of the type Au-Fe3O4 have been synthesised from separately prepared, differently shaped (spheres and cubes), monodisperse nanoparticles. This synthesis was achieved by the following steps: (a) Mono-functionalising each type of nanoparticles with aldehyde functional groups through a solid support approach, where nanoparticle decorated silica nanoparticles were fabricated as an intermediate step; (b) Derivatising the functional faces with complementary functionalities (e.g. amines and carboxylic acids); (c) Dimerising the two types of particles via amide bond formation. The resulting hetero-dimers were characterised by high-resolution TEM, Fourier transform IR spectroscopy and other appropriate methods.
Microchimica Acta - We describe a method for the visual and colorimetric determination of total nereistoxin-related insecticide residues. It is based on the nereistoxin-induced aggregation of gold... 相似文献
Density functional theory calculations suggest that β‐turn peptide segments can act as a novel dual‐relay elements to facilitate long‐range charge hopping transport in proteins, with the N terminus relaying electron hopping transfer and the C terminus relaying hole hopping migration. The electron‐ or hole‐binding ability of such a β‐turn is subject to the conformations of oligopeptides and lengths of its linking strands. On the one hand, strand extension at the C‐terminal end of a β‐turn considerably enhances the electron‐binding of the β‐turn N terminus, due to its unique electropositivity in the macro‐dipole, but does not enhance hole‐forming of the β‐turn C terminus because of competition from other sites within the β‐strand. On the other hand, strand extension at the N terminal end of the β‐turn greatly enhances hole‐binding of the β‐turn C terminus, due to its distinct electronegativity in the macro‐dipole, but does not considerably enhance electron‐binding ability of the N terminus because of the shared responsibility of other sites in the β‐strand. Thus, in the β‐hairpin structures, electron‐ or hole‐binding abilities of both termini of the β‐turn motif degenerate compared with those of the two hook structures, due to the decreased macro‐dipole polarity caused by the extending the two terminal strands. In general, the high polarity of a macro‐dipole always plays a principal role in determining charge‐relay properties through modifying the components and energies of the highest occupied and lowest unoccupied molecular orbitals of the β‐turn motif, whereas local dipoles with low polarity only play a cooperative assisting role. Further exploration is needed to identify other factors that influence relay properties in these protein motifs. 相似文献